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Conversion Factors,
Non-Sl to Sl Units of
Measurement

Non-SI units of measurement used in this report can be converted to SI units
as follows:

4,048.876 square meters

degrees (angle) 0.01745329 radians

foot 0.3048 moters

miles (U.S. statute) 1.609347 kilometers

0.08290304 square meters

2.589998 square kilometers




1 Introduction

Purpose

The presence of contaminants in the near surface ground water has resulted
in numerous geotechnical and ground water related studies. Most of these
studies have focused on some particular area of interest, such as the delinea-
tion of a particular plume or the geotechnical characterization of a specific site
for waste disposal.

The amount of data required for characterizing any such site is driven by a
general unwillingness to accept any degree of risk and a lack of understanding
of the subsurface. Both result from being unable to directly "see” below the
surface. ‘ :

Obtaining the required data, such as from borings or monitor wells, at a
contaminated site is hazardous and costly. Other factors which must be
considered beyond the normal costs associated with site investigations are, the
cost of protective clothing and protective equipment needed for workers, the
potential exposure to the workers of hazardous material during the investiga-
tion, and the risk of further environmental contamination.

To obtain the necessary subsurface data, the site is usually sampled on a
grid pattern. This occurs because most ground water studies are conducted on
the premise that the aquifers are homogeneous and isotropic. For regional
ground water studies to determine yield from an aquifer, these assumptions
can usually be used satisfactorily. However, at small sites, variability in the
aquifer is critical for contaminant movement. Here the geometry of the more
permeable materials is a major factor in the flow of contaminants in ground
water.

For example, if a discontinuous sand body is discovered at a site, addi-
tional data collection is initiated to define the extent of that sand body. This
is commonly done with more grid style sampling, on a closer spacing and this
"regridding” may go through several iterations, until data points which suffi-
ciently define the discontinuous sand body, are established.

A grid pattern does not consider the geology of a site, and results in exces-
sive data points, many of which do not add pertinent information. This exces-
sive data collection increases the risk of exposure, as well as the expense of
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the operation. A 27 square mile' area at Rocky Mountain Arsenal, Colorado
has about 3,400 soil borings and 1,600 monitoring wells for the purpose of
site characterization for hazardous waste cleanup (Duplancic and Buckle
1989). Had an information based, rather than grid based, boring plan been
followed some of these might not have been necessary.

Many urban areas throughout the world are built on sites adjacent to
streams and rivers. Thus, the industrial developments associated with these
areas are located on fluvial deposits, which contain discontinuous sand bodies.
Therefore, a need exists to bring geology into the site investigation process in
order to limit the number of data points needed to properly characterize dis-
continuous fluvial sand bodies.

A model predicting a minimum number of data points necessary to charac-
terize discontinuous sands, such as those commonly found in fluvial settings,
could reduce the number of data lucations needed and thus the risk of the
hazards and costs of drilling at contaminated sites.

Paleogeomorphic features, such as discontinuous fluvial sand bodies, are
important in controlling the movement of ground water. Detailed geomorphic
and statistical analysis of discontinuous sand bodies can predict the type of
sand body. If the sand body is penetrated by one or more borings, and the
width of the sand body can be estimated, the correct data point spacing can be
determined. Once the shape and orieatation of a particular sand body has been
determined, the appropriate hydrologic or physical control can be
implemented.

From the above ideas, a predictive model was developed. The model was
designed primarily for characterization of sites with geotechnical and ground
water applications, however, it could also be adapted to other uses. For
example, in oil and gas exploration, it could be used for following a discon-
tinuous sand reservoir. It could also be used for following a discontinuous
sand body for pursuit of reduction-oxidation fronts where mobile metals such
as uranium may have been precipitated. Other uses for which the model
could be adapted are certainly possible.

Scope of Research

This study was conducted to develop a predictive model for locating sam-
ple points needed to characterize discontinuous fluvial sand bodies, and thus,
minimize data needed to define the sand body, minimize the exposure to
hazards and to reduce the expense and time spent obtaining such data. This
was accomplished by:

! A table of factors for converting SI (metric) units of measurements to non SI units is
presented page ix.
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a. developing a rationale for exploration,
b. selecting sites for testing the exploration rationale,

c. selecting and applying statistical techniques to determine locations of
future sample points,

d. establishing confidence of data point locations from established
geology, and

e. developing a predictive model.

The following methodology was used to develop the model to determine
the optimum number and location of data points needed to adequately charac-
terize discontinuous sand bodies.

A rationale for exploration was developed using minimum requirements for
the number of data points needed, taking into consideration the probability of
encountering a discontinuous sand body and the site boundary.

A systematic evaluation was conducted to determine how the hazard and
expense of obtaining data for characterizing a discontinuous sand body at a
contaminated site could be reduced. Figure 1 shows the results of a compar-
ison of the typical method of gridding (part A) with a systematic approach
(part B). The systematic approach places data points around the perimeter of -
a site and defines a discontinuous sand body by predicting its location from
stratigraphic data, rather than just gridding and regridding the entire site. It
was evident that bringing geology into the data location selection portion of
site investigations as soon as possible would reduce the number of data points
needed.

To conduct the systematic evaluation, how the optimal data should be
collected to reduce the hazard must be determined. To determine how the
optimal data is collected, the control of the scale on the optimal data collection
was determined. This is shown in Figure 1, part B, a3 follows:

a. The control of the scale was determined by the variability of the site.
To establish the variability of the site, the environment of deposition
was determined.

b. The environment of deposition was determined by interpretation of
stratigraphic information, such as sedimentary structure, mean grain
size, and relative percentages of quartz and matrix material (Berg
1986).

¢. Once the environment of deposition was determined, the morphology
was predicted, which dictated the scale of the data collection.

Chapter 1 Introduction




[Distribution of‘uﬂ]
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Figurs 1. Diagrammatic representation of (A) the typical method of defin-
ing a discontinuous sand body and (B) a systematic approach of
defining a discontinuous sand body
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d. With the scale of the data collection established, the distribution of the
sand was determined, using Lorenz and others (1985) method for a
meander belt sand. The distribution of the sand controls the probability
of establishing a meaningful data point.

e. The probability of obtaining a meaningful data point controls the expo-
sure to the hazards and the expense of obtaining the data points.

This rationale was tested in study areas, selected from a literature survey
and established criteria met by the sites. The sites contained a specific
geologic condition (a discontinuous sand body) and a data base which had an
abundance of data already available. The data base itself was defined to
determine the amount and type of data available and its density (which con-
trolled the resolution of interpretations).

Such a site allowed for:

a. The extent of the site’s discontinuous sand body to be established, such
as from isopact and sand distribution maps.

b. Comparison of predicted parameters with that which is actually present.
This, in turn, allowed for a specific degree of confidence for various
data point spacing tc be determined.

Statistical techniques were selected which could be applied to de.crmine the
probability of the location of a data point being meaningful and the degree of
confidence of that location.

Kriging was the geostatistical technique chosen, based on numerous
authors’ descriptions of the applicability of kriging to geologic data sets (Clark
1979, Davis 1986, Di 1989, and many others). Kriging interpolates irregu-
larly spaced data to a regular grid, which was used for contour plotting.

Kriging compared pairs of known data points to generate a curve, called a
variogram. The variogram shows the variation of the numeric variable versus
distance from control points. Kriging estimates the value of a variable away
from control points. These estimates are produced in a grid, which can be
contoured to provide a map of the estimated variable values. Additional
information on Kriging is contained in Appendix A: Kriging Tutorial.

Once the sand body morphology was estimated from stratigraphic methods,
sand body width and probability of dual penetration were used as the pairs of
known data points to generate different data point spacing. This allowed for a
specific data point spacing to be established, based on the probability desired,
for reencountering the sand body.

Also, sand thickness was contoured and confidence intervals determined for
the sand thickness. With abundant data, the number of data points was
varied. Sand thickness and confidence was determined for each variation,




resulting in a minimum amount of data sufficient to define the sand body.
This minimum data being based on the confidence desired.

The rationale for exploration, stratigraphic methods for predicting extent,
and statistical methods for predicting data point locations and confidence for
those locations were combined into a predictive model.

Related Studies

Previous studies have been concerned with either, (1) the methods for
interpretation and prediction of eavironments of deposition (Berg 1986, 1970;
Ethridge et al. 1975 and LeBlanc 1972) or, (2) statistical predictive methods
(David 1977, Davis 1986 and Mousset-Jones 1980).

May (1985) dealt specifically with the application of kriging techniques in
conjunction with paleogeomorphic predictive techniques delineating the overall
trend of a fluvial sand sequence and delineating areas where additional data
were needed.

Di and others (1989) used geostatistics in designing sampling strategies for
soil surveys. Their study determined the utility of geostatistics in assisting
design of a sampling scheme for soil morphological properties in an alluvial
system. Kriging was also used in the study for predicting soil property values
at unsampled locations.

McBratney and Webster (1983) also applied kriging to regional soil sam-
pling and suggested that the actual efficiency achieved in their studies was
three - to nine - times greater than that estimated by the classical statistical
methods. However, few other studies of this kind have been made to substan-
tiate the claim (Di et al. 1989).
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2 Rationale for Exploration

Sampling Strategy

The first step, as in any geological investigation is a literature survey. A
literature survey should give at least an idea of the geology at a particular site
and thus, whether or not a fluvial sand deposit is expected. Literature may or
may not give information as to any expected trend (i.e., dip) of "bedrock” on
which fluvial deposits may have developed and thus the expected trend of any
potential fluvial deposits. In some areas the published information may be
detailed enough to show that there are indeed fluvial sand bodies expected in
the specific horizon (formation) of interest. There are, however, areas for
which no information at all is published, so that the first information would be
from the site of interest itself. This could be from surface morphology as in -
the case of surface or very near surface interest, or from actual sampling as in
the case of below surface interest.

This model will be based on the premise that little detail is known at the
site of interest itself. The only information that may be known is that there is
the possibility of a fluvial sand body at the site.

In nearly any site investigation there will be boundaries within which the
investigation will be restricted, at least initially. In contaminated or character-
ization sites, for example, the boundary will usually be the property boundary
of the project itself, at least initially. For oil and gas or mineral exploration,
the boundary will be the lease block.

For any site investigation there will be lines bounding the area of interest.
To encounter a fluvial sand body that may enter or exit the site, the boundary
should be the first region in which to obtain data. The spacing of the data
collegtion locations will be based on the legal requirements and/or the smallest
size sand body that is important in the project, or which can be predicted.

The spacing requirements can range from about one hundred feet to thousands
of feet. More discussion about the predicted size limitations will come in later
sections.

In the case of contamination and characterization sites, the order in which

the boundary is drilled can be dictated by logistics, since a minimum number
of data points may be reguired, regardless of the geology. If, however, there
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is some variation possible, due to the geology encountered or if literature
indicates an expected trend, a specific approach is more desirable.

There are two possible cases: (1) the sand body is at or near the surface,
and (2) the sand body is below the surface. In either case, surface geophysics
is a tool which may be brought into use. In the case of near surface contami-
nation and characterization sites, resistivity, electromagnetic, or ground pene-
trating radar may be used, running lines along the boundaries itself. For sites
suspected of having deeper sand bodies seismic lines may be run along the
boundaries.

Each of these surface geophysical methods have drawbacks which may
cause them to be of little or no use. These drawbacks include: cultural inter-
ference, which inhibit the use of resistivity and electromagnetic surveys; and
layers of different characteristics, which mask anything below them, preveat-
ing ground penetrating radar or seismic from "seeing” the horizon of interest.

Since boundaries of many sites correspond with roadways, fences, utilities,
etc., the utilization of surface geophysics for these sites is often severely
limited. Masking and resolution needed for deeper zones limits use of surface
geophysics in the case of many fluvial sand bodies.

If little or no geophysical information is available or obtainable, then the
locations for data, such as from drilling, are needed in an order to optumze
encountering a fluvial sand body.

The dip of the bedrock in the zone of interest generally will dictate the
orientation. Such information may have been gathered from the literature.
For a site with no information available, a minimum of three drill holes to
define the general stratigraphy under a site would be placed, and a three point
problem solved to obtain the dip of the bedrock for the horizon in question.
These three stratigraphic locations should be placed along boundaries, so that
they can provide other data of interest for the site.

Once the dip of the bedrock in question is obtained, the placement of data
locations can be optimized for encountering a fluvial sand body. The applica-
tion for which the model is used will dictate the actual locations. For example
if a north - south trend is expected in the fluvial sand body (where the drain-
age control is only due to a southward dipping bedrock) in a contaminated or
characterization site, the southern most boundaries would be drilled first. The
southern boundary would be the expected direction for a sand body to exit the
site, due to stream flow, assuming the dip of the bedrock is or was the control
for any stream developed upon the bedrock. This would also be the direction
for any contaminant or potential contaminant migration off site, based on
expected ground water flow in such a sand body.

Once the first (south in the example) boundary is drilled, the drilling pro-

gram should work from this first boundary on both sides (to the north along
the east and west boundaries in the example). These would be the next most

Chapter 2 Rationsle for Exploration




likely boundaries for an exiting fluvial sand deposit, based on the bedrock
trend.

Finally, the remaining boundaries (north in the example) would be drilted
in the event that a fluvial deposit may extend through it. A sand body may
not occur at an expected boundary for various reasons. One reason is that the
sand body may not be continuous through the site. Another reason is that a
stream may have developed under different controls than bedrock dip, or
perhaps the bedrock dip was different at the time the stream developed than it
is today.

The boundary drilling should be carried to completion, regardless of
whether or not a fluvial sand body has been encountered early in the boundary
drilling, because more than one may exist at a site.

If no fluvial sand is found in the boundary exploration, drilling should
progress inward in the same manner as the boundary was drilled, because a
fluvial sand body may exist within the site, but not extend out of it. This
could be caused by a facies change, or a fault where a sand body would have
been displaced. This is important in contamination or characterization investi-
gation as a collection or potential collection area within the site for
contamination.

Environmental Interpretations

Once a sand has been encountered at a site, the stratigraphic information
must be interpreted to establish the environment of deposition, whether or not
it is a fluvial sand, and whether or not it is from a meandering stream. This
is done by analyzing sedimentary structure, texture, and composition (Visher
1965). .

Of these sources, the sedimentary structures are of most importance,
because they reflect the processes that caused the sediment’s distribution.
This is followed in order of importance by textural change and composition.
Other knowledge which can be helpful in interpretation include regional strati-
graphic setting, nature of adjacent sediments, types of associated fossils, and
lateral variations in the sandstone (Berg 1986). Information can also be

-obtained secondarily from geophysical log responses, and porosity and perme-
ability. From a vertical sequence through the sediments in the horizon of
interest, the general morphology can be predicted. Figure 2 shows common
sequences of sedimentary structure, texture, and composition from sandstones
of different depositional environments. A sandstone could be determined to
be of fluvial origin if: (1) the sequence of sedimentary structures range from
dune (representing high flow regime) at the base to ripples (representing low
flow regime) at the top; (2) grain size decreases upward; and (3) composition
is mostly quartz with some matrix, the matrix increasing near the top of the
sequence.

Chapter 2 Rationale for Exploration
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There are, however, two types of fluvial deposits: braided and meander-
ing. Sand bodies deposited from braided streams have a lower sinuosity (the
ratio of channel length to valley length) than the meandering sand body depos-
its. Braided channels have a sinuosity of less than 1.5 and meandering chan-
nel’s sinuosities are equal to or greater than 1.5 (Leopold and Miller 1964).
Unfortunately, the depositional sequence remains the same regardless of the
curvature, since the sequence is based on the flow regimes. But, braided
sandstone bodies average on the order of 2000 ft in width while the meander-
ing sand bodies have much wider distribution, on the order of 10,000 ft or
more (Berg 1986). An exception to this is a meandering stream carrying a
large suspended load, resulting in small point bars because of sand-poor sedi-
ment. From one vertical sequence, the type of stream (i.e. braided vs. mean-
dering) may not be obtained. If the vertical sequence is thick (thickness vs.
width relationships will be discussed in the next section) the sand body could
be assumed to be meandering.

The morphologies of sand bodies that are not modern are based on those
observed in modern-day environments of deposition. Each environment of
deposition has a characteristic distribution of sediment (LeBlanc 1972).

Morphology Estimation

Once determined (or assumed) to be from a meandering stream, the width -
of the sand body can be estimated by using meander belt amplitude to approx-
imate the sand body width. Meander belt amplitude is calculated from chan-
nel widths. The channel widths are calculated from channel depths. The
channel depths being equivalent to sand thickness (Lorenz et al. 1985). This
can be done from one data location by making certain assumptions. However,
in estimating the width of the sand body, some assumptions must also be made
initially. A primary assumption is that meander belt amplitude approximates
sand body width (Lorenz et al. 1985). Another necessary assumption is that
sinuosities are greater than 1.7 (ratio of length of channel to down valley
distance). This is necessary because with less than a 1.7 sinuosity there is
little relationship between width and depth (Leeder 1973). Successive sweeps
of a migrating channel will erode tops of previously deposited sands, resulting
in incomplete thicknesses, however it must be assumed that a mature meander
belt is isolated within the floodplain deposits and that the thickness observed
represents that of the maximum thickness.

The sand body is assumed to be deposited as point bars, the thickness of
which is an approximation of the depth of the channel (Allen 1965). This is
shown in Figure 3, Part A. If the sand body is sandstone, rather than uncon-
solidated sand, the thickness measured must be corrected for compaction from
sand to sandstone. Ethridge and Schumm (1978) suggest a 10 percent factor
as reasonable for this compaction factor.

Chaepter 2 Rationale for Exploration
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Once the depth is obtained, Leeder’s (1973) formula

W, = 6.84'%

where
W, = channel width, m
h = channel depth, m

yields channel widths. This formula is in meters, so any measurements in
english units must be converted to metric units before using the formula.

Once the width is calculated, meander belt amplitude is obtained from
Lorenz and others’ (1985) equation

W, = 7.44W"

where
W, = meander belt amplitude, ft
W, = channel width, ft

The meander belt amplitude being the approximation of the sand body width.
This is shown in Figure 3, Part B. This equation is for english units, so the
metric width obtained from Leeder’s equation must be converted to english
units before being used.

Lorenz and others (1985) used both Leopold and Wolman’s (1960) and
Carlston’s (1965) data to establish the relationship between meander belt width
and channel width. These data contained a range of meander belt widths of
approximately 10 ft, from physical models, to near 15,000 f, from natural
streams.

The estimated sand body width will be an average for sand body popula-
tions over the sedimentary section, and are subject to normal geologic vari-
ability, such as differences in thicknesses due to location within the stream
channel or facies changes due to different periods of deposition. The original
channel depths are assumed in this model and the original data set relating that
depth to channel and meander belt width contain variabilities also. The
model, however, produces satisfactory sand body width estimates.

Chepter 2 Rationale for Exploration 13
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Prediction of Additional Data Point Locations

Once the width of the sand body has been estimated and the location of one
point in the sand body is known, the spacing of another data point location is
established based on the probability of encountering the sand body again.

Data point locations in the sand body and outside the sand body are necessary
to define the boundary of the sand body.

Two theorems of elementary statistics are necessary for derivation of the
probability that a second data location encounters a sand body if one has
already encountered it. The two theorems are: the law of compound probabil-
ity and the law of total probability.

The law of compound probability is that the probability of two events (say
A and B) occurring, P(AB), is equal to the product of the probability of one
event occurring (say P(B)), and the conditional probability of the other event
(A) occurring given that the first has already occurred, or P(AB) =
P(B)P(A | B).

The law of total probability states that if there are two mutually exclusive
eveats, (say C and D) then the probability of either occurring (P(CUD))
equals the sum of the probability of each occurring, or P(CUD) = P(C) +
P(D).

Using these probability statements, Lorenz and others (1985) developed the
probability function for dual penetration of a sand body, assuming an ideal
case, as depicted in Figure 4. In this case, the meander belt sand body is
infinitely long, has a width of W, and the data location spacing is w. The
probability of both data points intersecting the sand body if one data location
point is a distance x from the center of the sand body is ©/x, where ©, in
radians, is defined on Figure 4 and is a function of x. So, P(A | B) = O/x,
where A is a dual intersection and B is a data point intersection a distance x
from the center of the sand body. The probability of a data point location
being within the distance of from x + dx/2 to x - dx/2 from center of the
sand body is 2dx/W,, (dx is the mathematical notation for the differential,
where x is the variable of integration). So, P(B) = 2dx/W,,. Symmetry
about the center of the sand body results in the factor of 2.

From the law of compound probability, the probability of both occurring is
P(AB) = P(B)P(A | B) = 26dx/(xW,,). It does not matter where the data
points intersect the sand body, as long as there is dual intersection.

If a data point intersects the sand body at a different distance than in event

B, (say event C) then the law of total probability gives the probability as
P(ABUAC) = P(AB) + P(AC).

Chapter 2 Rationsle for Exploration
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Being extending to all possible distances

P(Dual Intersection) = (/% W) [ o2 (odn)

Since

081-61-22

where
cos! (W, /2 - x)iw) ifx 2 W2 -w
@l =
0 ifx < W2 -w
cos”! (W2 +xiw) ifx s w-W,/2
Zz =
0 ifx>w-W,2
then

P(Dual Intersection) = (2/aW,) | oV ™3(x - ¢, - $)dx

Using these probability relationships, probability of dual penetration vs.
sand body width can be plotted for various data point location spacing. From
the resulting curves, probability for dual intersection can be obtained for any
combination of sand body width (as estimated) and data point location spacing.
Figure 5 shows probability of dual penetration vs. sand body width for several
data point location spacings. A computer program, MathCAD, was used to
calculate the probabilities for the curves shown in Figure 5. MathCAD is a
computational software copyrighted (1986-1989) by Mathsoft, Inc., Cam-
bridge, Massachusetts. The results of the calculations are contained in Appen-
dix B. The program was verified by comparison of its computed values with
those, for the same variables, computed by May (1985) and by Lorenz and
others (1985). Both May’s and Lorenz and others’ curves are contained in

Appendix C.
Entering the plot of sand body width vs. probability with a high probability

produces a data point spacing likely to intersect the sand body again. Con-
versely, using a low probability value produces a data point not likely to

Chapter 2 Rationale for Exploration
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intersect the sand body. In proceeding radially from the first intersection
point, it is necessary to use appropriate probabilities and resulting radii to both
intersect and not intersect the sand body. In this manner, the sand body boun-
dary location is delineated.

The spacing for location of the additional data point, in any case, takes the
form of the radius of a circle, the ceater of which is the data point location
which previously intersected the sand body. This is shown in Figure 6. In
the case of boundary drilling, there would not be a full circle for the location
of the additional data point due to the portion of the circle falling outside of
the boundary line.

The location of the data point itself on the circle {or portion of) can be
arbitrary. However, it should be placed in a manner as to lend itself, as
easily as possible, to the locating method used. Certainly, accessibility will
play an important role in the actual placement of the data point location.

If, or when, more than one data point location is to be placed on the circle,
the distance between the successive data points should be the same as the
radius of the circle, thus keeping the same spacing. As new data are added,
the spacing can of course be adjusted as necessary, based on new calculations.

Once sufficient data are obtained, such as from boundary borings, kriging,
as described in the Introduction section, can be used to help select the location
on the circle for data location spaci-:., which will give a high probability of
being a useful location. Kriging is a geostatistical technique that can be used
to estimate irregularly spaced data, -ach as drilling information, to a regular
grid which can be used for contour plotting, such as that of a geologic sur-
face. The kriging variance shows the areas where additional data are needed.
An area shown with most error and overlapping the circle would be the area
to place the next data point.

Chapter 2 Rationale for Exploration
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3 Case Study

To test the rationale for exploration described in the previous section, a site
was chosen which was known to have a discontinuous sand body and which
had a large amount of data already collected and available. Thus, the site
would lend itself conveniently to the application of this rationale.

The site chosen was a part of the Rocky Mountain Arsenal near Denver,
Colorado. Figure 7 shows the general location. The Arsenal is located north-
east of Denver, Colorado, adjoining the northern portion of the Denver
Stapleton International Airport. Figure 8 shows the Arsenal and its vicinity.
The application of the rationale for exploration was limited to a four square
mile portion of the Arsenal because of the availability of usable data in that
particular area and due to the location of the particular sand body chosen for
this application. This four square mile area is shown in Figure 9. It is com-
posed of Sections 1 and 2, Township 3 South, Range 7 West and Sections 35
and 36, Township 2 South, Range 7 West. '

Due to contamination being detected in the groundwater below the Arsenal,
numerous studies have been conducted to delineate the route(s) of migration
(May 1985). This has resulted in a large quantity of geological data.

Geological data includes geotechnical reports, geophysical logs, boring
logs, and core samples. This data was in sufficient quantity and of a quality
that was useable in a hypothetical drilling program.

Several discontinuous sands have been delineated from the data. One of
these sands was chosen as the sand to "target” during the application.

Geologic Setting

Rocky Mountain Arsenal is located in the Denver basin, a structural
depression occupying a large area of Northeastern Colorado, Southeastern
Wyoming and Western Nebraska. Within the basin the Lower Cretaceous and
Tertiary rocks occupy an area of 670 square miles, from Greeley in the north
to Colorado Springs in the south and from the Rocky Mountain front range in
the west to near Limon in the east (Robson and Romero 1981). The location
of the Arsenal within the basin is shown in Figure 10. The basin is filled

Chapter 3 Case Study
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with approximately 15,000 ft of sediments composed of limestones, sand-
stones, shales and conglomerates (Robson and Romero 1981).

The stratigraphic position of the Arsenal within the Denver basin is shown
in Figure 11. At the Arsenal, the geologic formations of concern, with
respect to this application, are the Late Cretaceous and Early Tertiary Denver
formation and the Tertiary and Quaternary alluvium.

May (198S) states that the Denver formation is composed of 250 to 400 ft
of interbedded clay shale, claystone, siltstone, sand, and sandstone. Low-
grade coal, lignite, and carbonaceous clay shale are also present. The pre-
dominant olive-gray, brown, and green-gray colors in the formation are
caused by rock fragments derived from the erosion of basaltic and andesitic
lavas. The lowest elevations for the base of the Denver formation in the
entire Denver basin are found along the eastern side of the city of Denver,
including the southern portions of the Arsenal. The sands in the Denve
formation are generally weakly cemented sandstones or compact fine- to
medium-grained sands. Many of these sandy units represent deltaic channel
deposits which grade laterally and vertically into silts and clay shales. The
individual sand or sandstone layers are commonly lens-shaped and range in
thickness from several inches to as much as 60 ft.

May (1985) describes the surficial deposits as having been deposited pri-
marily by ancient streams. In some areas, a veneer of aeolian deposits occur,
but for discussion purposes, these are included as alluvium. The surficial
alluvial deposits are of Pleistocene and Recent age. Pre-Wisconsin deposits
contain alluvial silts, sands and gravels. The Wisconsin-age alluvium was
deposited as glacial outwash from the Rocky Mountain front range. The
aeolian deposits were derived from glacial outwash. The deposits immediately
overlying the Deaver formation are identified as the Verdos alluvium of
Kansan age. The Verdos is composed of boulders, cobbles, pebbles, and
sands derived from granites and pegmatites and Cretaceous shale. The Verdos
is up to 100 ft thick in the Arsenal area. Recent alluvial sand deposits have
accumulated from several separate periods of deposition. Figure 12 shows the
typical geology below the Arsenal.

From the several sand bodies that incised the Denver formation in the
subsurface, the highest, thickest, and best delineated one was chosen as the
" "target” for application of the rationale for exploration. '

Application of Rationale for Exploration

The location of the sand body chosen as the "target sand” dictated the area
within the Rocky Mountain Arsenal for the application of the rationale for
exploration. Figure 13 shows the location of this sand body within the Arse-
nal. The quantity of usable data dictated the actual boundaries for this appli-
cation. Figure 9 shows the selected site boundaries.
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Figure 12. Typical geology below the Rocky Mountain Arsenal (after
Robson and Romero 192")
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With the site selected, the rationale for exploration described in the previ-
ous chapter was used for a hypotheoretical drilling exploration program.

Since a substantial amount is known about the geology and discontinuous
sand bodies at the Arsenal, it was presumed that only the regional geology
was known. From the regional geology a possibility existed for a sand body
to be incised into the Denver formation.

An assumption was also made that there is too much cultural interference
at the Arsenal to use surface geophysics to investigate the boundary of the
site. Indurated sands and gravels in the area mask geophysical signatures at
depth.

Since the regional geology shows the top of the Denver formation dipping
to the south, the southern boundary of the site was hypothetically drilled first.
A spacing of one mile was arbitrarily chosen for the boundary drilling spac-
ing, although this could be initial spacing for a site investigation based on an
expected sand body width or logistically based on Sections of the Public Land
Survey. A Section is a square mile, and this land location system is present at
the Rocky Mountain Arsenal. Existing borings located as close to this mile
spacing as possible, were chosen to represent the hypothetical drilling loca-
tions. As in the case for these locations, as well as others that follow, the
borings chosen had to have usable information, and thus were often not in the
exact chosen location. This is acceptabie, since logistics in actual drilling
programs often dictate offsetting actual borings from desired locations. This -
offsetting can be due to inaccessibility which is due to rugged or swampy
terrain, to buildings and other structures, or buried utilities.

The target sand was not encountered in any of the southern boundary
borings. Next, borings to complete the western and eastern boundaries were
chosen. Again, the target sand was not encountered. Then the boring to
complete the northern boundary was chosen. This boring did encounter the
target sand. Table 1 contains the location, boring number, and "target” sand
thickness for the borings chosen in the hypothetical boundary drilling and
subsequent borings. Figure 14 shows the locations of the boundary drilling
borings. These borings are located with the Colorado state grid coordinates.

Using the data available from the boring (1228) which encountered the
target sand, the environment of deposition was determined for that sand. The
data available included grain size analysis, x-ray diffraction analysis, geo-
physical log, and detailed core description.

Sands generally occur in regular predictable sequences, that are character-
ized by vertical changes in composition, texture, and sedimentary structures.
These ordered sequences contain information that provides keys to their
method of transportation and deposition. By studying properties such as
sedimentary structure, mean grain size, and relative percentages of quartz and
matrix material, a sandstone can be categorized as to its environment of depo-
sition (Berg 1986). This methodology was used to determine the environment
of deposition of the sand body encountered between thirteen and thirty
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Table 1
Rocky Mountain Arsenal Hypothetical Exploration Boring Locations
snd Sand Thicknesses in Sequence of Hypothetical Borings

2,178,931

175,779

o

2,183,891

175,445

2,187,218

175,608

2,188,139

180,921

2,188,363

185,171

2,178,446

179,381

2,178,428

185,575

2,183,794

185,108

-

2,181,158

184,639

o |o |o o |o |o ]o o

2,183,068

182,320

2,188,014

184,038

2,183,048

180,800

2,184,234

177,874

2,181,060

178,489

2,188,235

180,886

2,181,208

180,372

2,181,444

176,282

2,188,789

178,332

two feet depth in boring 1228. The various procedures that were used are
summarized in the following paragraphs. More details on these procedures

are given in the Stratigraphic Interpretations section.

Detailed descriptions of the core from boring 1228 were generated during a
previous study. These descriptions provided information on the lithology of
the sand body.

In addition to sieve grain-size analysis, grain-size data was statistically
analyzed to determine standard deviation and the relative degree of sorting of
the grams by using grain size distribution curves. The degree of sorting was

helpful in confirming the history of the sand.
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The geophysical log for boring 1228 was used to aid in establishing the
abrupt lower contact of the sand body with the underlying Denver formation.
The clay shale of the Denver formation is easily recognizable.

Selected samples were tested by x-ray diffraction to determine the percent
of quartz present. The percentage of quartz is used in the indication of the
environment of deposition. Mostly quartz with a little clay matrix, which
increases upward, is typical for a fluvial sequence.

From this boring information, which is summarized in Figure 15, the envi-
ronment of deposition was interpreted by comparison with diagnostic charac-
teristics for a fluvial sand, which are shown in Figure 2.

The coal seam in boring 1228, at a depth of about 50 ft, was deposited in a
swampy environment. The coal seam was overlain by a layer of olive-brown
clay shale containing abundant organic material and sandy silt lenses. The
clay shale which contains volcanic ash and worm borings was deposited in a
low energy environment such as a shallow lake. A fine to medium grained
non-cohesive to slightly cohesive alluvial sand was deposited over the clay
shale. The abrupt lower contact of the sand with the underlying clay shale
indicates that a stream deposited the sand, cutting down into the clay shale.
The upper finer portions of the fluvial sand sequence was removed by a much
younger stream which deposited gravel, sand, silt and clay on top of the Den-
ver alluvial sand sequence.

With the environment of deposition determined to be that of .a meandering
stream, the sand body width was estimated. Channel width was calculated
from the sand thickness of 19.0 ft. Since the sand is consolidated, the thick-
ness is corrected by 10 percent to 20.9 ft. This was then converted to metric
6.37 meters for use in Leeder’s equation. Solving Leeder’s equation gave a
channel width of 117.73 meters or 386.27 ft. Using Lorenz’s equation and
the channel width of 386.27 ft, the meander belt amplitude was calculated to
be 3050 ft. This is the estimated sand body width. This data, along with
subsequent calculations, is summarized in Table 2. Sample calculations are
contained in Appendix D.

Using the curves in Figure 5 which were calculated probabilities for vari-
ous sand body widths and various well spacings, a well spacing was chosen.
A well spacing for a 50 percent probability of encountering the sand again
was used, since definition of the sand body is the object in this application.
The well spacing for the first set of data, based on Figure 5, was approxi-
mately 2500 ft. This 2500 ft. was used as the Gesired spacing. Table 3
contains the well spacing for boring 1228 and subsequent borings which
encountered the sand.

The 2500 ft spacing results in an arc or semi- circle around boring 1228,
having a radius which is that of the well spacing.

Using the borings hypothetically drilled up to this point (numbers 1124 -
1228 in Table 1), sand thickness was kriged using Geo-EAS, a public domain
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Table 2
Data from Estimating Sand Body Width

19.0
14.8 (Average)
19.4 (Average)

Table 3
Data from Estimting Well Spacing 4

Estimated Sand Approximate Data
Body Width, ft P a. ft

mm«

computer program produced by the U.S. Environmental Protection Agency.
The Geo-EAS program was verified by comparison of the program’s results
with results of Clark’s (1979) kriging of a simulated iron ore deposit. Both
are contained in Appendix C. The estimated percentage of iron and the
kriging standard deviations for those estimates produced by the Geo-EAS
program are similar to Clark’s. The slight differences can be attributed to the
differing interpretations in the drafting of the contours.

Once kriged, the error for the kriged thickness was obtained, as the kriging
standard deviation. The kriging standard deviation was then contoured.

By comparing the kriged standard deviation with the well spacing "arc",
some portions of the arc fell in areas where the sand thickness standard devia-
tions were more than the standard deviation of the whole data set, and some
portions of the arc fell in areas where the sand thickness standard deviations
were less than the standard deviation of the whole data set. The areas on the
arc that were in the area where the standard deviations of the sand thickness
was greater than that of the whole data set were then hypothetically drilled.
The area with the highest standard deviation was selected for the first boring,
then additional borings were selected along the arc in the area where the
standard deviation of the sand thickness was greater than the standard devia-
tion of the whole data set. These data locations were separated by the same
well spacing as the distance from boring 1228. Figure 16 shows the arc for
the well spacing from boring 1228, the kriged standard deviations and the
locations for the next borings.
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The area where the standard deviation is greater than about 6 is considered
sufficiently defined, that which is less than 6 is not considered sufficiently
defined. This is based on the standard deviation in relation to the standard
deviation for the entire sample population. If the specific location standard
deviation is greater than the population standard deviation, then the thickness
at that location is not sufficiently defined. If the specific location standard
deviation is less than the population standard deviation, the thickness is con-
sidered reliable (Clark 1979). In this case the standard deviation for the
population is 6.28. This standard deviation was obtained by taking the square
root of the population variance, which is given by the Geo-EAS program.
Table 4 contains the variances given by the Geo-EAS program and their calcu-
lated standard deviation for this first set of borings and each subsequent set of

borings.

Table 4
Data Set Sand Thickness Population Standard Deviations for the
Rocky Mountain Arsenal

The second set of borings were hypothetically drilled. Two did not
encounter the target sand, one did. This information is contained in Table 1.
Only boring log information was available for these borings, so confirmation
of the depositional environment could not be made. The depositional environ-
ment was assumed to be the same, meandering fluvial. A new sand thickness
was estimated from the average thickness of the two borings which had
encountered the sand. A new sand body width and subsequent spacing was
calculated. This information is shown in Table 2.

Thickness was again kriged, obtaining the standard deviation of the sand
body thickness, which was contoured. An arc from boring 757, which
encountered the sand, only allowed for one additional boring in an area where
the standard deviations of the sand thickness was greater than the standard
deviation of the whole data set, the highest standard deviation on the arc.
Figure 17 shows this. Table 4 contains the population standard deviation as
“Set 27,
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Figure 17. Well spacing arc, as heavy line; contoured kriging standard

deviations (in feet) of sand body thickness; and additional boring
locations away from boring 757
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The new location was hypothetically drilled. Based on stratigraphic
relationships, it was determined that the target sand was encountered. This
boring, 1251, had sufficient information to confirm the environment of
deposition. This information is summarized in Figure 18. The strati ic
section in the sand sequence is almost ideatical to that described for boring
1228. A stream had cut down into underlying dark gray silty clay shale.

A new average thickness was calculated, giving a new sand body width and
subsequently a well spacing of approximately 2500 ft, the same spacing as
obtained from the first data set. These are shown in Tables 2 and 3.

Thickness was kriged and standard deviation contoured. The area of
highest standard deviation on the arc for well spacing from boring 1251 could
not be hypothetically drilled, because there were no usable borings in that
area. Three borings with approximately the same well spacing along the arc,
as from boring 1251, were chosen. These were in areas where the standard
deviations were greater than the standard deviation of the whole data set.

There are fewer borings in the lower portion of the site that penetrate the
target sand, because it is becoming deeper with the direction of dip.

Two of the additional borings did not encounter the target sand, one did, as
shown in Table 1. This is shown in Figure 19.

‘This set of borings was kriged showing the area containing the sand body
to be defined, but due to the variation in the standard deviation, three more
boring sites were chosen in areas of relatively higher standard deviation in an
effort to make the standard deviation more uniform. This is shown in
Figure 20.

These areas are approximately the same spacing from several wells as the
last derived well spacing.

These sites were hypothetically drilled, none encountering the target sand.
These borings were added to the data set and the thickness was kriged. The
resulting standard deviations are fairly uniform. This is shown in Figure 21.

With the data used in the hypothetical drilling program (Table 1), the
kriged thickness was contoured. This is shown in Figure 22. The purpose of
contouring the kriged sand thickness was to compare with that already pro-
duced by other studies. Although similar in some respects, the test case was
noticeably different from that of May’s (1985) and ESE’s (EBASCO 1989).
These are shown in Figures 23 and 24 respectively.

Since neither used the Geo-EAS program, May’s (1985) and ESE’s
(EBASCO 1989) sand thickness data were kriged with the Geo-EAS program.
The data point (boring) locations are listed in Appendix E and are shown in
Figures 25 and 26. The resulting sand thickness contours are shown in Fig-
ures 27 and 28. The kriging standard deviations for these two data sets were
also contoured and are shown in Figures 29 and 30.
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Figure 19. Well spacing arc, as heavy line; contoured kriging standard devi-
ations (in feet) of sand body thickness; and additional boring
locations away from boring 1251
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Figure 21. Kriging standard deviations of thickness, in feet, for full set of
borings in Table 1 (corresponding thicknesses are shown in
Figure 22)
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Figure 22. Kriged sand thickness, in feet

Chapter 3 Coase Study

43




=7
/r‘“m

L |



35

-0
Y

MILE

Figure 24. ESE’s sand thickness, in feet (after EBASCO 1989)
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Figure 25. Location of May's data points used for kriging (after May 1985)
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Figure 28. Kriged sand thickness, in feet, for all data at the Rocky Mountain
Arsenal
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Figure 30. Kriging standard deviations, in feet, for all data at the Rocky
Mountain Arsenal
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When comparing the kriged standard ¢::viation to the sand thickness stan-
dard deviations, in both cases, May’s and 3li he data, the thickness standard
deviations are greater than the standard deviz.ion of the whole data sets in the
southern portions of the site. This is due to the lack of sufficient borings
penetrating the depth necessary to encounter the target sand in that area of the
site. The variances and standard deviations for the sample populations are
given in Table 4.

From these results, it would appear that the hypothetical borings had
defined the sand body better than May’s (1985) data or all the available data
from EBASCO (1989).

However, when making confidence statements of May's (1985), and of all
the data, a different conclusion is obvious. The confidence statement is made
for sand thickness which is derived from the kriging. This is commonly given
as 95 percent confidence with a + or - factor which is double the standard
deviation.

This results in a + or - factor which is greater than the sand thickness for
the test case, even though the sand thickness standard deviations were less
than the standard deviation of the whole data set. Table 5 shows the confi-
dence of locations shown in Figure 31 and whether the sand thickness stan-
dard deviation was less than the standard deviation of the whole data set
(reliable) or not, for selected locations in the test case, as well as for May s
(1985) data, and all the data.

The obvious solution to the confidence statement problem, is to add more
boring locations. However, since all the data available has already been used,
with the sand thickness standard deviations being greater than the standard
deviation of the whole population in some areas, there are not enough boring
locations to be able to do this.

Another approach had to be taken to further investigate this portion of the
rationale for exploration. This approach will be described in the Supplemen-
tary Case Study section.

Despite the confidence statement problem, the rationale for exploration did
follow the target sand through the site. This can be seen in Figure 32 which
shows the subtle shift of the boring locations in the direction of the target
sand.

Another problem was eacountered during the application of the rationale
for exploration. This was a problem of justifying the variograms for the
kriging with limited data. Variograms usually contain considerably more data
than that of the boring locations of the hypothetical drilling.

A variogram was obtained with the Geo-EAS program for each data set.
The same type and model was obtained in each case. These are contained in
Appendix F. To justify the types and models as usable for these data sets,
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Table 5
Confidence Statements of Selected Locations at the Rocky
Mountaln Arsenal

7.5 ¢ 34

8 + 28

32.5 ¢+ 3¢

7.5 + 34

20 t 30

45 + 36

>45 t 40

0+ 32

0z26

5+ 22

0 < 24

17.5 + 20

18 + 24

some modern streams were used to obtain variograms from larger data sets.

This will be more fully described in the Geostatistics section.
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Figure 32. Boring locations defining the “target” sand: stars are borings
which encountered sand, the dark circles did not
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4 Stratigraphic Interpretations

This section provides the details of establishing and confirming the
environment of deposition for the "target” sand body at the Rocky Mountain
Arsenal and the reason for thickness variation of and termination of that “tar-
get” sand body.

Interpretations

From various data available from borings at the Rocky Mountain Arsenal,
the environment of deposition of the "target” sand was determined. As stated
in the previous section, this data included grain size analysis, X-ray diffraction
analysis, geophysical logs, and detailed core descriptions. The information
available for each boring of the hypothetical drilling was used to define the
sand body. This information is shown in Figure 33.

Core descriptions from borings, geophysical logs, and grain size analyses
were available for the four-numeral boring locations with the exception of
boring 1239, which had no core description. Additionally, borings 1228 and
1251 contained grain size statistical analyses and X-ray diffraction analyses.
Both of those boring locations intersected the "target” sand during the hypo-
thetical exploration drilling.

Information for the three-numeral boring locations was obtained from
cross-section and tabular data contained in previously produced geological
reports.

The cross-section plus tabular data and the available core descriptions were
used to produce the lithologic characterizations at the boring site locations.
Those are shown for individual borings in a portion of Figures 15 and 18 and
in cross- sections contained in Figures 34, 35, and 36. Core descriptions are
contained in Appendix G. Cross-sectional and tabular information are con-
tained in Appendix H.

Little sedimentary structure was described in the cores. This may have
been due to the poorly consolidated condition of the sand combined with the
method of sampling. Split spoons and pitcher samplers were pushed into the
sediment for sampling. This type of sampling of poorly consolidated saturated
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Grain X-Ray

Boring Other  Boring Size Geophysical Diffraction
Number Number Log Analysis Log Analysis
1124 SP13 X X X
1155 SP15 X X X
1143 SP16 X X X
1160 SP02 X X X
1188 EO1 X X X
1123 SPO8 X X X
1185 NO6 X X X
1228 APO1 X X X X

746 - Tabular and Cross-Sectional Information Only
1153 SPOS X X X

756 - Tabular and Cross-Sectional Information Only
1251 AP25 X X X X

653 - Tabular and Cross-Sectional Information Only

757 - Tabular and Cross-Sectional Information Only

758 - Tabular and Cross-Sectional Information Only
1247 AP21 X X X
1148 SP12 X X X
1239 AP12 X X

Note: X - Available

Figure 33. Available information for specific boring locations at the Rocky
Mountain Arsenal
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Figure 34. Cross-sectional view down dip through the "target" sand body at
the Rocky Mountain Arsenal
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sands would destroy any faint structure that might be present. The sand is
called massive in some descriptions, however. A massive sand should be
expected in the basal portions of the fluvial sequence due to higher transport
energy in the deeper portion of the channel. Although any sedimentary struc-
tures that might have been present in the sand were not obtained, the lithology
was obtained and was instrumental in interpreting the depositional environ-
ment. This is exemplified by looking at the cross-sections in Figures 34,

35, and 36. Figure 34 shows the "target” sand body in the direction of dip.

It should be noted that the top of the sand body is relatively smooth, dropping
in elevation in the direction of dip. The contact of this sand with the underly-
ing clay is sharp, but irregular. The bottom of such sand bodies are often
irregular, but the irregularity in the cross-section may be due to the location
of the boring within the width of the sand body. Boring 1251 would be in the
thickest portion, while borings 1228 and 746 are closer to the edges of the
sand body, with boring 757 being even closer to the edge of the sand body.
The cross-section in Figure 34 also shows why the "target” sand does not con-
tinue through the southern most boundary of the site. Quaternary and
Tertiary alluvial deposits have replaced the sand, indicating that it was eroded
and removed by the Quaternary and Tertiary processes which deposited the
alluvium.

The cross-section in Figure 35 shows that the western side of the sand may
also have been terminated by the Quaternary and Tertiary alluvium.

The cross-section in Figure 36 shows that the Quaternary and Tertiary
alluvium is continuous along the southern boundary at the elevation where the
"target” sand would be expected.

The electrical resistivity portion of the geophysical logs were helpful in
determining relative grain sizes and establishing contacts between different
geological materials as depicted in Figure 37 and a portion of Figures 15
and 18. The geophysical logs that were available on the borings of the hypo-
thetical drilling program are contained in Appendix I.

Vertical distribution of the grain size within the "target” sand was deter-
mined by sieve analyses from th~ core samples, taken at various depths within
the sand. Only two locations, borings 1228 and 1251, which encountered the
"target” sand in the hypothetical exploration, had sieve analyses in the “tar-
get” sand. The gradation curves for the analyses for these two borings are
contained in Appendix J. The median grain size of each analysis was plotted
with depth for each boring and is shown in a portion of Figures 15 and 18.

In addition to the sieve analyses, the inclusive graphic standard deviation
was used as a measure of sorting. Using Folk’s (1980) formula:
o84 - g16 | 295 - D5
4 6.6
bution of grain size in a sample (¢ = -log, mm). The ¢84 is the ¢ value
where the cumulative curve crossed the 84 percent line. Alluvial deposits are
moderately to poorly sorted. This statistical analysis was performed on the
two borings, 1228 and 1251, which encountered the "target® sand and which

to include 90° of the cumulative percent distri-
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Figure 37. Appearance of geophysical log curves through typical fluvial
deposits (after Berg 1986)
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had sieve analyses. The determination of sorting is contained in Table 6. As
expected for a fluvial sand, the samples from boring 1228, which were taken
from the sand itself show moderately well sorting and the sample from bor-
ing 1251, which was taken from the upper portion of the fluvial sequence

shows poor sorting.

Table 6
| Sorting as Determined from inclusive Standard Deviation

m- Depth, ft Number Deviation Sorting

Moderately Well

14.0- 163
19.0 - 20.0

Poorly

400-41.4 Poorly

This tendency to change toward the upper portion of the sequence is sup-
ported by the increase in matrix material and decrease in quartz in the upper
portions of the sequence. X-ray diffraction analysis was performed on sam-
ples from different intervals of the two borings, 1228 and 1251, which
encountered the “target” sand. The results are summarized in Table 7 and are
shown in 2 portion of Figures 15 and 18. Boring 1251 shows a decrease in

percentage of quartz at the upper portion of the sequence. RBGth borings show
around 40 percent quartz through the middle and lower portions of the sand.

Table 7
_ X-Ray Diffraction Analysis Results ‘
'
15 78

140- 153 38
j 1228 19.0 - 20.0 38 15 78
18 10
42 17
37
39
42
385

409 -41.4
51.5-52.0
3.2 - 63.7
74.3-74.8

16

16

78.3-78.8 17

80.0-80.5

16

The information as just described, when available, was compiled for each
boring in the hypothetical drilling that encountered the “target” sand as shown
in Figures 15 and 18 for borings 1228 and 1251 respecti- This
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information was then compared to that for various depositional environments
which can form sand bodies, shown in Figure 2. From the comparison, the

characteristics of the fluvial channel environment were met by the
“target” sand with the exception of the sedimentary structures, which were not
obtained. Figure 38 shows the diagnostic characteristics for a fluvial channel
sand.

The sand penetrated by boring 1228 is interpreted to be a fluvial sand. A
number of factors confirm this interpretation. The fact that no marine or mar-
ginal marine fossils were observed in the sand sequence or in strata above or
below the sand suggest that deposition occurred inland, away from direct
marine influence. The absence of glauconite is another factor pointing toward
a fluvial origin for the sand. Finally, the stratigraphic position of the sand
sequence, in reference to the large volume of sediments within the Denver
basin, places it in an area where fluvial deposits have prograded out and over
deltaic and marine sediments.
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5 Supplementary Case Study

As discussed in the Case Study section there were a few problems
encountered in applying the rationale for exploration to the case study at the
Rocky Mountain Arsenal. This section addresses one of those problems, that
of insufficient data locations of the depth needed to encounter the Arsenal
"target” sand.

To alleviate this problem, another site was selected. This "supplementary”
site was chosen from a modern day stream. A.modern stream allowed for a
close to absolute definition of a sand body, for comparison of what is visibly
defined with that which is defined by the rationale for exploration.

Site Description

The site chosen for this supplemental application of the rationale for
exploration is a portion of the Brazos River floodplain in central Texas. The
general location is shown in Figure 39. Availability of satellite imagery and a
corresponding topographic map dictated the choice of the Brazos River.

Satellite imagery and a U.S. Geological Survey topographic map of the
same area, the Austin, Texas 1:250,000 scale map, were used to obtain
approximate floodplain boundaries. These floodplain boundaries subsequently
were assumed to represent the width of the stream’s sand body. The site is a
275,000 ft east to west and 225,000 ft north to south area, bounded by the
central Texas state grid coordinate system lines of 3,100,000 ft and 3,275,-
000 ft East, and 275,000 ft and 500,000 ft North. It encompasses the Brazos
River from just west of Hearne, Texas to near where the Navasota River joins
the Brazos River at Navasota, Texas. Figure 40 shows the site boundaries
and the Brazos River floodplain boundaries.

From measuring the width of the Brazos River floodplain boundaries, the
sand body width was mapped to be approximately 24,000 ft. From this
width, a sand body thickness of approximately 80 ft was back calculated from
Lorenz’s and Leeder’s equations (described in Rationale for Exploration sec-
tion). This 80 ft thickness was assumed to be uniform for any location within
the sand body. Thus both a thickness and boundary for the hypothetical sand
body were obtainable for any location in the site.
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Figure 39. General location of the Brazos River site
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Figure 40. Brazos River site and floodplain boundaries
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Application of the Rationale for Exploration

With the assumptions described above, the rationale for exploration was
applied to the site. Thus, any location selected by this rationale provided the
needed information, and the process could continue for any level of infor-
mation desired. .

The boundary of the site was hypothetically drilled with 25,000 ft spacing
between boring locations. The spacing was chosen somewhat arbitrarily,
although this spacing could have been hypothetically based on encountering
sand body width(s) of concern, such as that of the Brazos River. These are
shown in Figure 41. Figure 41 also shows which locations encountered the
assumed 80 ft thick sand body. Even though the sand would have been
encountered early in the hypothetical drilling, the boundary was completely
drilled, as would be the case in most environmental applications.

The hypothetical sand body was then followed through the site from the
southern most boring location which intersected the sand body. Again, envi-
ronmentally, this would be an exit point for any pollutant, so the down gradi-
ent and thus potential exit point would need to be defined first.

Since the boundary had been hypothetically drilled, several data points
existed. These were used to produce contours of the standard deviation of the
thickness estimates obtained from kriging with the Geo-EAS program, in the
same manor as described previously in the Case Study section. These stan-
dard deviations are shown in Figure 42.

From the curves in Figure 5, the interval for data point, or hypothetical
boring, spacing of approximately 17,500 ft was obtained. This is the spacing
for a 50 percent probability of dual penetration of a 24,000 ft wide sand body
in order to define the sand body.

This distance, of 24,000 ft from the boring which encountered the hypo-
thetical sand, was in a area where the sand thickness standard deviation was
less than the standard deviation of the whole data set. One boring was hypo-
thetically placed where the highest standard deviation occurred at that dis-
tance, as shown in Figure 43.

Often during the hypothetical exploration, the boring spacing would not be
enough to place an additional boring out of the area where the sand thickness
standard deviations were less than the standard deviation of the whole data set.
When this happened, usually only one additional boring was placed where the
higher standard deviation would occur. Only in a couple of instances were
two borings chosen at the same time due to a large enough area (regarding the
boring spacing) with the same standard deviation.

This procedure was followed during the hypothetical exploration through

the site, defining the sand. The fifteenth boring that was added after the
boundary borings, produced estimates of the sand thicknesses whose standard
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Figure 42. Standard deviation, in feet, for the Brazos River boundary data
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Figure 43. First definition boring location
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deviations were less than that of the whole data set. This was determined by
the contoured thickness estimates, compared to the contoured standard devia-
tion of those thicknesses. This was done for the area in which the estimated
sand body thicknesses occurred.

The proximity of the first of the definition borings to the south and east
site boundary borings coincidentally guided the first boring locations in the
direction of the sand, and provided low enough standard deviations so that no
borings were needed outside the sand body. As the borings moved further
into the site, the procedures resulted in the highest sand thickness standard
deviation and occasionally the standard deviation which was greater than the
standard deviation of the whole data set to occur in the direction of the sand
body. When the procedures took the location of a boring out of the sand
body, the next location would be chosen in a direction that resulted in inter-
secting the sand body again, always with the 17,500 ft spacing and in the
direction of the highest standard deviation.

On two occasions, the results of a boring location placement resulted in
sand thickness estimates whose standard deviations were less than the standard
deviation of the whole data set and were uniform surrounding it. In these
instances the next boring location was chosen in the direction of the northern
boundary boring which encountered the sand. Had there not been another
boundary boring that had encountered the sand body, three borings with
equal, 17,500 ft, spacing from one another would have had to have been
drilled to continue the exploration.

The definition of the sand body was considered complete once the standard
deviations of the sand thicknesses were less than the standard deviation of the
whole data set. This occurred after the fifteenth boring. However, four more
boring locations were chosen at locations with relatively higher standard
deviations in order to achieve relatively uniform standard deviation for the
area containing the sand body. All nineteen boring locations are shown in
Figure 44.

Appendix K contains the contoured standard deviations and each data point
location as it was selected, in the order in which the hypothetical exploration
proceeded. The standard deviation for each of the data sets is contained in
Table 8. Each data set contains all the previous borings plus the one(s) added
at each step, as described in the Rock Mountain Arsenal test case.

Application of the Grid Method for Exploration

The hypothetical sand body was also defined by grid drilling for compari-
son purposes. The spacing was kept the same as the original boundary bor-
ings (25,000 ft). The locations of these borings are shown in Figure 45. A
total of thirty-four borings, in addition to the boundary borings, would have
been drilled in the site containing the sand body using the typical grid method
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Figure 44. Boring locations added to define the hypothetical sand body by
the rationale for exploration method, included are the boundary
borings
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Table 8
Data Set Population Standard Deviations for the Brazos River ‘

 scmapoputssen  venco | sundurs oot |

375.00

528.93

664.36

783.67

981.74

1,043.50
1,024.00

1,096.50
1,161.00
1,218.40
1,200.00
1,251.60

1,297.50

1,338.50

1,308.10

1,328.70

for exploration. This was twenty-five more borings than required by the
rational for exploration.

Had geology been taken into account in this typical grid method during the
exploration, and limited the number of borings to those just outside of the
sand body, as shown in Figure 46, twenty-five borings, in addition to the
boundary borings, would have been necessary to define the sand body. This
is still ten more than required by the rational for exploration, to define the
sand body reliably.

This data set was kriged to obtain estimated thicknesses and standard devia-
tions of those estimates for comparison with those obtained by following the
rationale for exploration. This would not normally be done in a gridding type
of exploration program.
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Figure 45. Boring locations from a typical grid exploration method
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Figure 46. Boring locations defining the hypothetical sand body by a typical
grid exploration method, included are the boundary borings
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Comparison of Methods

Several parameters from the gridding method for exploration were com-
pared to their counterparts obtained from the rationale for exploration method.
These included the appearance of the estimated thicknesses produced by
kriging, the number and spacing of boring locations needed by each to define
the sand body, and the confidence statements for selected locations within the
sand body. '

The rationale for exploration method predicted the sand body with uniform
sand thickness standard deviations from nineteen borings in addition to the
boundary drilling. The gridding method for exploration required twenty-five
borings to define the sand body. The gridding method also provided results in
which the sand thickness standard deviations were less than the standard
deviation of the whole data set, but kriging is not normally done for this
method. The rationale for exploration boring spacing was 17,500 ft while the
grid method boring spacing was larger, at 25,000 ft. Even more boring loca-
tions would have been necessary for the grid method to define the sand body
with a spacing of 17,500 ft.

The sand thickness estimates of both methods are very similar, as shown in
Figures 47 and 48. The standard deviation of the estimated thicknesses of the
grid method are slightly lower than those from the rationale for exploration.
The swusdard deviations for each method are shown in Figures 49 and 50.

The slightly lower standard deviations for the grid method leads to slightly
better confidence statements. However, the difference in directly comparable
locations (the same thicknesses) is only a few feet. The locations for these
confidence statements are shown in Figures 51 and 52. The confidence state-
ments are contained in Table 9.

Estimated thicknesses were also obtained from data of the entire site on a
10,000 ft grid spacing, which was used to produce a variogram for the site.
The locations of these data points are shown in Figure 53. Discussion relating
to the variogram will be contained in the Geostatistics section. The standard
deviation for this grid was uniform, thus, no contours were possible. How-
ever, the estimated thickness from this data set closely approximated the hypo-
thetical sand body’s geometry. These estimated thicknesses are shown in
Figure 54.

The sand body’s appearance from the estimated thicknesses from both
methods of exploration are noticeably wider than that of this large data set.
This is due to the differences in data point spacing, as well as the number of
data points used. Obtaining such a large number of data points obviously
adds to the definition and confidence, but is not reasonable, for reasons
described in the Introduction section.

This larg~ data set was useful in looking at the confidence statement loca-
tions. Confidence statements from locations corresponding to the edge of the
sand body, which is shown in Figure 55, are shown for both methods in
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Figure 47. Estimated sand thickness, in feet, from the rationale for explora-
tion method
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Figure 48. Estimated sand thickness, in feet, from a typical grid exploration
method
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Figure 49. Standard deviation, in feet, for estimated sand thickness from
the rationale for exploration method
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Figure 50. Standard deviation, in feet, for estimated sand thickness from a
typical grid method of exploration
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Figure 51. Locstions of confidence statements in Table 9 for the rationale
for exploration method
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Figure 52. Locations of confidence statements in Table 9 for a typical grid

exploration method
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Table 9
Confidence Statements for Brazos River Locations Shown in

Figures 51 and 52

Raionsle for Exploration Mathod

40 = <18

=~

25 £ 32

<10 ¢ >36

SO0 + 12

45 + 27

10 + 28

55 + 18

10+ 18

2
3
4

| 5

|

K

8
9

20 £ 30

b
(=]

80

Table 10. Figures 56 and 57 show the locations where the confidence state-
ments were obtained with respect to each method’s estimated sand body thick-
nesses. This comparison shows that in the area where the close approximation
shows 10 ft thicknesses, both cases show at least 20 ft thicknesses and greater.
Assuming that the error is negative in each confidence statement gives esti-
mates that are relatively closer to that of the close approximation:, with some
exceptions. The exceptions were the rationale for exploration confidence
thicknesses which were noticeably higher. This results from the comparison
locations picked. By viewing the estimated thicknesses for each method,
changing the locations for confidence statements could cause the grid method
to have noticeably high estimates of thickness and the rationale for exploration
estimates of thickness to all be relatively close.

In both methods, the thicknesses are noticeably over-estimated near the
close approximation sand boundary. However, both methods indicate that at
those boundary locations the sand body was present. In other words, the
thickness estimate is larger than the possible error. Some of the locations
from Figures 51 and 52 show a potentially negative error that if subtracted
from the estimated thickness would result in a negative estimate. In these
cases it cannot be said for sure that the sand body exists at that location.
From this data it appears that if the negative error is taken and subtracted
from the estimated thickness, the sand body boundary is approximated by
resulting numbers approaching 0, but not becoming negative.

As stated earlier, better confidence can be established by increasing data
point locations. However, the objective is to define the sand body with the
least number of data points. The traditional grid method yielded similar
results, in estimated sand thickness and standard deviations of those estimates,
to those produced by the rationale for exploration. With the rationale for
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Figure 53. Data point locations for the Brazos River 10,000 foot grid
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Figure 54. Estimated sand thickness, in feet, from the Brazos River
10,000 foot grid
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Figure 55. Locations chosen for the confidence statements in Table 10
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Table 10
Confidence Statements (in ft) for Brazos River Locations Shown in

Figures 55, 56, and 57

Grid Method 30 £ <16 |20 £ <16 20 £ <16 35 + <18
i 95 percent
Confidence

Error Subtracted <4

i Rationasle for 20 + <18
i Exploration
95 percent
Confidence

Error Subtracted

exploration requiring fewer data point locations, then the definition of the sand
body with the least number of data points was accomplished by the rationale
for exploration.

Also important is that the sand body could be followed through the site as
in the Case Study section. This is particularly useful for some applications,
such as oil and gas exploration. Table 11 contains a summary of the compari-
son of the definition of the sand body by the traditional grid method and by
the method described by the rationale for exploration.
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Figure 56. Locations of confidence statements in Table 10 for the rationale
for exploration method
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Figure 57. Locations of confidence statements in Table 10 for a typical grid
exploration method
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Table 11
Summary of Comparison for Selected Parametars of Different

Exploration Methods
| Paromerar compared | auid Method | Rationele tor Expioration Method |

17,500 ft (based on sand body width)

Number of definition borings 15 (reliably)

Thickness estimstes compared H Higher (slightly higher than those of
to those of 10,000 ft grid the grid method)
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6 Geostatistics

A statistical method was chosen to produce estimates of sand thickness and
subsequently errors for those thicknesses. The method chosen, which has
already been named in earlier sections, was kriging. Specifically, ordinary
block kriging was used.

Kriging is a form of weighted local averaging. Kriging is considered
optimal for geologic data sets by numerous authors (Davis 1986, David 1977,
Clark 1979, etc.). This is because the method provides estimates of values at
unrecorded places without bias and with minimum and known variance, pro-
vided there is a model for the semi-variogram. Kriging produces those esti-
mates with a lower number of observations than that of conventional methods.
Clark (1979) gave the points of major importance found in numerous publica-
tions as: (1) Given the basic assumptions, no trend, and a model for the
semi-variogram, kriging always produces the best linear unbiased estimator.
(2) If the proper models are used for the semi-variogram, and the system is
set up correctly, there is always a unique solution to the kriging system.

(3) If you try to estimate the value at a location which has been sampled, the
kriging system will return the sample value as the estimator, and a kriging
variance of zero. In other words, you already know that value. This is
usually referred to as an exact interpolator. (4) If you have regular sampling,
and hence the same sampling/block setup at many different positions within
the deposit, it is not necessary to recalculate the kriging system each time.
Figure 58 shows results of Di et al.’s (1989) comparison of a conventional
method to the kriging method and that the kriging method produced lower
standard errors. Conventional methods include standard errors of the mean,
student’s t test, least squares analyses, analysis of variance, etc. The above
descriptions served as the basis for selecting kriging for this application.

The semi-variogram, also termed simply the variogram, is a curve of the
variation of a numeric variable, thickness in this application, versus distance
between pairs of known, or control, points. Estimates of the semi-variogram
are used to determine the weights applied to the data when computing the
averages and are presented in the kriging equations.

Since kriging is an advanced technique involving intense computing, it
must be done with a computer. For this application, as mentioned in a previ-
ous section, a public domain program was used. This program which is
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Figure 58. Di and others’ comparison of conventional method to the kriging
method (after Di et al. 1989)
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called Geo-EAS (Geochemical Environmental Assessment Software), was
developed by the U.S. Environmental Protection Agency. This program con-
tains sub-routines which allow for the generation of the variogram, kriging the
variable values with the generated variogram, and contouring the output val-
ues. The kriging also produces standard deviation for the kriged values,
which can be contoured.

Because the Geo-EAS program is public domain and contains all the
desired routines in one package, it was used for the calculations of the kriging
method and subsequent contouring. Also, if used in field application, speed
of obtaining the needed locations is crucial, therefore a relatively easy to use
program with all the needed products is desirable.

Obtaining the Variogram

There is disagreement in the geostatistical literature in using semi-
variogram or variogram as the correct term. For this application, variogram
will be used, for simplicity.

The variogram as defined by Englund and Sparks (1988) is a plot of the
variance of paired sample measurements as a function of the distance between
samples. Variograms provide a means of quantifying the commonly observed
relationship that samples close together will tend to have more similar values

than samples far apart.

The variogram is necessary for kriging, and is a critical part of this, as
well as any geostatistical, study. The variogram is the interpretation of the
spatial correlation structure of the sample data set. It controls the way that
kriging weights are assigned to samples during mterpolauon, and consequently
controls the quality of the results.

Englund and Sparks (1988) point out that all interpolation and contouring
methods make the assumption that some type of spatial correlation is present,
that is, they assume that a measurement at any point represents nearby loca-
tions better than locations farther away. Variogram analysis attempts to
quantify this relationship. In other words, how well can a measurement be
expected to represent another location a specific distance away? Experimental
variograms plot the average difference of pairs of measurements, as one half
the squared difference (variance), against the distances separating the pairs. If
all possible sample locations were measured, a true variogram could be com-
puted for the site where the variance of all pairs of measurements would
satisfy each combination of distance and direction. Since, this is not usually
possible, limited data is used to compute variances and then plot a graph of
the variances versus distance. Then, a curve is fitted to the graph. This
model is assumed to be an approximation of the true variogram.

Several types of variograms are possible. The Geo-EAS program allowed
choices, so that each type could be compared. These were the ordinary
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variogram, relative variogram, “mad’ogram”, and the non-ergodic or Covario-
gram. Englund and Sparks (1988) describes each as follows. The relative
variogram is analogous to the relative standard deviation often used to mea-
sure analytical variability. When modeled and used for kriging the relative
kriging standard deviations must be multiplied by the estimated values to be
comparable with kriging standard deviations produced with ordinary vario-
gram models. The “mad’ogram” plots the mean absolute differences, but is
not recommended for kriging. The non-ergodic or covariogram is based on
estimates of covariance rather than variance. The covariograms have the same
units as ordinary variograms and may be modeled and used for kriging in the
same way. The covariance values, rather than variogram values, are actually
used in the Geo-EAS kriging matrix equations for greater computational
efficiency.

Once the type of variogram is selected, there are several mathematical
models which may define the graph. Again, Geo-EAS allowed choices, so
that each model could be compared. These are the spherical, exponential,
linear, and Gaussian. The spherical model of the variogram is observed
frequently in experimentai data (Englund and Sparks 1988).

To fit any model to the variogram, an estimate of the Y-intercept, termed
the nugget, is needed. The difference between the nugget and the maximum
Y value, termed the sill, is also needed. Finally, the distance at which the
model reaches the maximum value, termed the range, is needed. Although
some form of least squares criteria could be used, the Geo-EAS program
selection is subjective, picking the model by trial and error which gives the
best fit. ]

The Geo-EAS program also allows for using data in a specified direction,
or from all directions, to specify pair orientation criteria for the variogram
computations.

As meantioned in the Case Study section, there was a problem in obtaining
the variogram because of the limited amount of data used in those data sets.
Although the covariogram with a spherical model in a specific direction
appeared to be the best, it was questionable. In particular, the range was
poorly defined. However, when kriging, the Geo-EAS program allowed for a
minimum and maximum range so that an area could be bracketed for the
range. Examples are the variograms produced from the Rocky Mountain
Arsenal data set 1, shown in Figure 59 and from the Brazos River boundary
data set, shown in Figure 60. The other variograms for the remainder of the
data sets are contained in Appendix F.

To justify the type and model of variogram used for this application, and if
it should be directional, larger data sets for the same variable, thickness, were
used to generate more graphs. One data set contains all the data from the
Rocky Mountain Arsenal that encountered the target sand, one contains all the
data for a 10,000 ft grid for the Brazos River and another contains data from
a 1000 ft grid for the Salt River in Phoenix, Arizona. The Salt River was
added to the sites already used to reduce the chance of a coincidental
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agreement between the type and model of variogram, and for additional
variety of sand body size and climatic conditions. The sand width and thick-
nesses for the Salt River were obtained in the same manor as that of the
Brazos River, described in the Supplemental Case Study section. Satellite
imagery and the Phoenix, Arizona 7-1/2 min quadrangle were used in this
case. The Salt River site is bounded by the Arizona state grid coordinates of
435,000 ft and 775,000 ft East and 875,000 ft and 884,000 ft North. The
general location of the Salt River site is shown in Figure 61. Figures 26,

53, and 62 show the data point locations for each of these. Tabulation of the
data is contained in Appendix E.

These data sites allowed for a variety in orientation through the site, size
(width and thickness), climates, and ages of sand bodies. In each case, a
directional covariogram with a spherical model was the best fit for the data.
Therefore, the type and model of the variogram, which results from the data
sets in the case studies, are justifiable. Figures 63, 64, and 65 show these
variograms. Appendix F contains other variograms used in this project.

Kriging

As previously described, kriging is a weighted-moving-average interpo-
lation method where the set of weights assigned to samples minimizes the
estimation variance, which is computed as a function of the variogram model
and locations of the samples relative to each other, and to the point or block
being estimated (Englund and Sparks 1988). ’

As the above definition reveals, kriging estimates can be for an area,
termed block, or for a point. Point kriging usually provides estimates similar
to block kriging. However, if a point being estimated coincides with a sam-
pled location, the estimate is set equal to the sample value. This is not
appropriate for contour mapping, which implicitly requires a spatial estimator
(Englund and Sparks 1988).

The kriging estimates can be produced with either ordinary or simple
kriging. Ordinary kriging estimates the point or block values with a weighted
average of the sample values within a local search neighborhood, centered on
the point or block. Simple kriging also assigns a weight to the population
mean, but makes a strong assumption that the mean value is constant over the
site. It also requires that the available data be adequate to provide a good
estimate of the mean (Englund and Sparks 1988).

The kriging portion of the Geo-EAS program allows for a selection from
these choices. From the above statements, the ordinary and block kriging
were chosen for this application. These also happen to be the default settings
for the program. Default settings in the Geo-EAS program were used in most
cases for sake of simplicity and speed, but mainly because they were the best
choices for this application, as evidenced above.
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Figure 61. General location of the Sait River site
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The kriging portion of the Geo-EAS program produces estimates of the
variable and the standard deviation of those estimates in a grid spacing which
is contoured. Thickness was the variable for this application. The thickness
was contoured in order to compare the results of the computer program to that
produced by other methods, as at Rocky Mountain Arsenal, or that which was
known, as that for the Brazos and Salt Rivers. The Brazos and Salt River
sites’ actual boundaries are shown in Figures 40 and 62. The boundaries
shown by the thickness estimates can be seen in Figures 54 and 66. The com-
parison for the sites with known widths shows good reproduction of the sand
bodies by the estimated thicknesses. The standard deviations of the thickness
estimates were used in part to chose locations for additional information and
in part to establish confidence of the estimated thickness. These have already
beea discussed previously in the Case Study and Supplemental Case Study
sections.

The level of discussion presented in this section provides an overview of
the geostatistics used in this application. A tutorial is provided in Appendix A
for a more in depth understanding. Procedures can also be found in more
depth from several source texts on the subject, such as in Davis (1986), and
by Davis’s suggestion, Clark (1979). Discussion of the.techniques used and
the operation of the Geo-EAS program is contained in Englund and Sparks
(1988).
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7 Predictive Model

As a result of the effort described in the preceding sections, a model was
produced which predicts the location of data points needed in defining a dis-
continuous sand body. After having survived trials, as described in the Case
Study, Supplemental Case Study and Geostatistics sections, the rationale for
exploration has become the predictive model. The model is shown in Fig-
ure 67 and is described as follows.

The Model

The model as shown in Figure 67 begins initially, as any site investigation
should, with a literature survey. The question is then asked, "Did the litera-
ture survey provide any information on which to base an exploration pro-
gram?". If not, a minimum of three stratigraphic borings must be drilled to
obtain the minimum information needed, the direction of dip of the bedrock of
interest.

With the information, either from the literature survey or from boring
information, priorities on which site boundaries should be drilled first are
established. The priorities are based on the most likely orientation of any
possible sand body.

Once the boundary priorities are established, a decision must be made as to
whether surface geophysics can be used to explore for any sand body along
the boundaries. If surface geophysics is a possibility, the method most appli-
cable must be selected. If surface geophysics cannot be used, a drilling pro-
gram must be initiated. The spacing for placement of the borings will depend
on the application of the model.

During the exploration program and/or upon completion of it, the question,
"Was a sand body encountered?” must be asked. If no sand was encountered,
the question then posed is whether the exploration program is complete or not.
If the exploration program is complete, then the model is ended with no sand
body having been found. If the exploration program is not complete, the
model is reentered by continued exploration inward from the boundary. This
cycle or loop would continue until no sand was found and the exploration
program was completed, or until a sand body was encountered.
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At any time, if 2 sand body is encountered, the question, "Can the environ-
ment of deposition be determined?” must be asked. This requires that a pos-
sible sand body found by surface geophysical methods be drilled, to obtain the
information necessary to make the environment of deposition determination.

If the environment of deposition can be determined, it must be determined to
be that of a meandering stream. If it is not, the model ends, since a require-
ment for this model is that the sand body is deposited by a meandering
stream. If the environment of deposition is fluvial and meandering, or if it is
assumed to be fluvial and meandering (the environment of deposition not
determinable), the sand body width is estimated.

The next step in the model, following estimation of the sand body width, is
dependent upon the purpose for which the model is being used. If the model
is being used to define a sand body, as would be typical for an environmental
application, a data or well spacing that has a 50 percent probability of dual
penetration of the sand body is chosen. If the model is being used to reen-
counter the sand body, as would be typical for an oil and gas application, a
data or well spacing that has the highest possible probability of dual penetra-
tion is selected within the spacing restrictions for which the model is being
used. In either case, the data or well spacing is picked from the curves in
Figure 5.

Using the data or well spacing distance as the radius from well(s) penetrat-
ing the sand body, circle(s) or arc(s) are drawn.

Using the Geo-EAS program, the standard deviations for estimated sand
thicknesses produced by kriging is contoured from the current data set.

Additional data point(s) or well(s) are placed in location(s) on the circle or
arc where the standard deviation shows that the thickness estimates standard
deviation is greater than that of the standard deviation for the whole set of
data, or, where the thickness estimates standard deviation is the highest. If
more than one data location is placed along the circle or arc, they are sepa-
rated by the data or well spacing obtained for the radius of the circle or arc.

The next step in the model is answering the question, “Has the data set, to
date, created a reasonable estimate of thickness for the area of interest (i.e.
the sand body)?". If not, the model must be reentered with the question "Was
a sand body encountered?” (with the most recent addition to the data set). It
should be noted that when reentered at this point, each subsequent portion of
the model is redone. This includes calculating new sand body widths esti-
mates, selecting new data or well spacings, etc. If and/or when the area of
interest does show sand thickness standard deviations less than the standard
devigtion of the whole data set, then a confidence statement is made.

The confidence statement is the thickness estimate + or - the standard
deviation for the kriged area. If the standard deviation is greater than the
thickness, then it cannot be said that the sand is present. In this case, addi-
tional data or boring locations must be added, in locations of the highest
standard deviations and then reenter the mode! by making a new confidence
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statement. Once the confidence statement is reasonable, (i.e. the standard
deviation is less than the estimated thickness) the model is completed.

If a sand body is encountered, meeting the conditions required to take the
model to completion will normally require cycling through the model several
times, reentering through the "Was a sand body encountered?” section.
Through this process, the exploration program will follow the sand body
through the site.
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8 Conclusion

The research described in this report was directed at developing a method
to minimize the data needed to define a discontinuous sand body. Since most
populated areas are located adjacent to streams, the fluvially deposited sand
body was the specific type targeted by this research. The purpose of the
research was to minimize the hazards and costs associated with the exploration
of such sand bodies, particularly at contaminated sites. Minimizing the num-
ber of borings necessary to define a fluvial sand body was accomplished by
bringing geology into the exploration by predicting the location for needed
data, based on determining the geometry of a sand body, once it was encoun-
tered, and by using any data already available.

The geometry of the sand body was determined by establishing the envi-
ronment of deposition from stratigraphic data such as lithology, geophysical
logs, grain size analysis, and the amount of quartz present. Once the eaviron-
ment of deposition was determined to be fluvial and meandering, the thickness
of the sand was used to estimate a width for the sand body, using Leeder’s
(1973) and Lorenz and others’ (1985) equations. This procedure required

- several assumptions and contained erzors (based on geological variations), but
produced a satisfactory estimate of the sand body width. From the sand body
width, a data point spacing was obtained from the probability of penetrating
the sand a second time.

By using the data from locations already in existence, such as that created
by boundary drilling exploration, the thickness was kriged using the Geo-EAS
program. This produced a grid of estimates of the sand body thicknesses, and
perhaps more importantly, the error of those estimates (as the standard devia-
tion). By comparing the standard deviation of the estimates with the standard
deviation for the entire data set, new data point locations could be chosen in
areas where the sand thickness standard deviations were greater than the stan-
dard deviation of the whole data set, or in areas with the most error, at the
data point spacing needed.

The procedure described above was followed until the sand body was
defined. By using this method, the sand body was defined with significantly
fewer data point locations than required by typical grid methods of
exploration.
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This rationale for exploration was applied to the Rocky Mountain Arsenal,
where the sand body was defined to the point where the standard deviation of
the sand thicknesses were less than that of the whole data set. The exploration
already conducted at the Arsenal had not defined the sand body to a point
where the standard deviation of the sand thicknesses were less than that of the
whole data set, thus, a planned comparison for accuracy could not be made.
This resulted in a supplemental site being used for comparison purposes.

Since the Arsenal site supported the stratigraphic determination portion of
the rationale for exploration, the supplemental site was chosen as a modern
floodplain whose width could be visually established. Using this known
width, a thickness was obtained and used as the thickness of the sand body at
all locations. The site chosen was that of the Brazos River. Hypothetical
exploration programs were then conducted to define the sand body, using the
rationale for exploration and a typical grid exploration method. The results of
each method of exploration were then compared. The comparison showed
that the rationale for exploration had defined the hypothetical sand body with
significantly fewer data points, but with similar accuracy of that of the grid
method.

Variograms used to krige during the hypothetical explorations at the
Arsenal site and for the Brazos River site had to be justified, because, nor-
mally large data sets are required to produce the variogram. All the data
defining the sand body at the Arsenal, and close spaced grid data from the
Brazos River and the Salt River were used to create variograms. These vario-
grams from the large data sets indicated that variograms used in the limited
data explorations were justified.

Having survived the test case applications, the rationale for exploration
became the predictive model for defining a fluvial sand body.

Thus, based on the research described, the predictive model which was
developed can be used to select data point locations in defining a fluvial sand
body by following the sand body into and through the site. This is accom-
plished by bringing geologically based statistical methods into the exploration
program. By doing this, significantly fewer data points are needed to define
the sand body than needed by the typical grid method, which is commonly
used. The lower number of data points reduces the hazard and cost associated
with the exploration program.

Chapter 8 Conclusion
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9 Recommendations

Based on the findings of this research the following recommendations are
made:

a. The conclusion that the predictive model defined a discontinuous sand
body with a minimum number of data point locations is based on
limited testing. Additional sites should be tested. These need to be of
various size fluvial sand bodies, from different locations, in different
climates, of different ages, for varying amounts of initial data, and for
different applications.

b. Although the findings of this research -:1ows that the predictive model
reduces the number of data point lo-2tiorss needed to define a discontin-
uous sand body, existing or visible dz:.a was used. The model should
be used during actual exploration programs for determining “in the
field" applicability.

¢. The confidence statements which were made for the defined sand bodies
in this research shows large errors, particularly at the smaller thick-
nesses. These confidence statements were made based on the assump-
tion that the distribution of the data is normal, even though a normal
distribution can give a physically impossible sand body thickness (nega-
tive about a zero or small thickness). This is because the functions
which may better describe the variable’s distribution, such as log-
normal or beta, need a relatively large amount of data to even establish
which function would be best. More data than this application usually
will usually provide. Additionally, little work has been published to
advance the state of the art for these functions. Further investigation
needs to address the use of non-normal distribution functions.

d. Investigations should be conducted to determine if the predictive model
developed in this research can be adapted to stacked fluvial meander
belt sand bodies, in a layered sequence.

e. Other environments of deposition for discontinuous sand bodies need to
be researched in order to determine if predictive models can be devel-
oped to reduce the number of data point locations needed to define
them.
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Appendix A
Kriging Tutorial

Overview

Geostatistical methods are useful for site assessment where data are
collected on a spacial network of sampling locations. Kriging is a weighted
moving average method used to interpolate values from a sample data set onto
a grid of points for contouring. The kriging weights are computed from a
variogram, which measures the degree of correlation among sample values in
the area as a function of the distance and direction between samples (Englund
and Sparks 1988). This tutorial will provide a glossary of geostatistical terms
adapted from Englund and Sparks, 1988; a discussion of kriging, with the
kriging equation; a discussion of variograms, with explanations of the
different models; and a simple example showing calculations.

Glossary

Block Kriging - Estimating the value of a block, centered on a specific grid
node, from a set of nearby sample values using kriging.

Covariance - A statistical measure of the correlation between two variables.
Covariance is usually treated as the simple inverse of the variogram,
computed as the overall sample variance minus the variogram value.

Exponential Model - A function frequently used when fitting mathematical
models to experimental variograms.

Gaussian Model - A function frequently used when fitting mathematical
models to experimental variograms.

Kriging Standard Deviation - The standard error of estimation computed
for a kriged estimate. Kriging is the weighted linear estimate with the particu-
lar set of weights which minimizes the computed estimation variance (standard
error squared). The relationship of the kriging standard deviation to the actual
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error of estimation is very dependent on the variogram mode! used and the
validity of the underlying assumptions.

Linear Model - A function frequently used when fitting mathematical
models to experimental variograms.

Madogram - A plot of mean absolute difference of paired sample measure-
ments as a function of distance and direction. Madograms are not true vario-
grams, and generally should not be used in kriging. The kriging standard
deviations will be meaningless.

Nugget Model - A constant variance model most often used in combination
with one or more other functions when fitting mathematical models to

experimental variograms.

Ordinary Kriging - A variety of kriging which assumes that local means
are not necessarily closed related to the population mean, and which therefore
uses only the samples in the local neighborhood for the estimate. Ordinary
kriging is the most commonly used method for environmental situations.

Point Kriging - Estimating the value of a point from a set of nearby sample
values using kriging. The kriged estimate for a point will usually be quite
similar to the kriged estimate for a relatively small block centered on the
point, but the computed kriging standard deviation will be higher. When a
kriged point happens to coincide with a sampled location, the kriged estimate
will equal the sample value.

Range - The distance at which a variogram model reaches its maximum
value, or sill.

Semi-Variogram - There is disagreement in the geostatistical literature as to
whether "semi-variogram" or "variogram” should be used, but they have the
same meaning.

Sill - The upper limit of any variogram model.

Simple Kriging - A variety of kriging which assumes that local means are
relatively constant and equal to the population mean, which is known. The
population mean is used as a factor in each local estimate, along with the
samples in the local neighborhood.

Spherical Model - A function frequently used when fitting mathematical
models to experimental variograms.

Variogram - A plot of the variance (one-half the mean squared difference)
of paired sample measurements as a function of the distance (and optionally of
the direction) between samples. Typically, all possible sample pairs are
examined and grouped into classes (called lags) of approximately equal dis-
tance and direction. Variograms provide a means of quantifying the
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commonly observed relationship that samples close together will tend to have
more similar values than samples far apart.

Variograms

Englund and Sparks (1988) state that the computation, interpretation, and
modeling of variograms is the “heart” of a geostatistical study. The vario-
gram model is the interpretation of the spatial correlation structure of the sam-
ple data set. It controls the way that kriging weights are assigned to samples

during interpolation, and consequently controls the quality of the results.

All interpolation and contouring methods make the assumption that some
type of spatial correlation is present. They assume that a measurement at any
point represents nearby locations better than locations farther away. Vario-

gram analysis attempts to quantify the relationship of how well a measurement |

can be expected to represent another location a specific distance away. Vario-
grams plot the average difference (actually, one-half the squared difference, or
variance) of pairs of measurements against the distances separating the pairs.
If measurements were possible at all sample locations, a "true” variogram
could be computed for a site showing the variance of all pairs of measure-
ments which satisfy each combination of distance and direction. In practice,
with limited data, variances are computed for groups of pairs of measurements
in class intervals of similar distance and direction. Then a graph is plotted of
the variances versus distance. Then a model curve is fitted to the graph. The
model is assumed to be an approximation of the “true” variogram.

Davis (1986) describes the semivariogram in a similar manor, exemplifying
the use of a different term for the variogram. Davis (1986) continues his
presentation of the "semivariogram” by assuming that the samples are point
measurements of a property. For computational tractability, the assumption is
also made that the samples are uniformly spaced along straight lines. If the
spacing between samples along a line is some distance A, the semivariance,
7y, Can be estimated for distances that are multiples of A:

Ta ':;".h &; 'xm;)zn"

In this notation, X;, is a measurement of a regionalized variable taken at
location i, and X;,,, is another measurement taken h intervals away. We are
therefore finding the sum of the squared differences between pairs of points
separated by the distance Ah. The number of points is n, so the number of
comparisons between pairs of points is n - h.

If the semivariances are calculated for different values of h, the results can
be plotted in the form of a semivariogram (i.e. variogram). When the dis-
tance between sample points is wero, the value at each point is being compared
with itself. Hence, all the differences are zero, and the semivariance for vy, is
zero. If Ah is a small distance, the points being compared tend to be very
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similar, and the semivariance will be a small value. As the distance Ah is
increased, the points being compared are less and less closely related to each
other and their differences become larger resulting in larger values of v,. At
some distance the points being compared are 5o far apart that they are not
related to each other, and their squared differences become equal in magnitude
to the variance around the average value. The semivariance no longer
increases and the semivariogram develops a flat region called a sill. The
distance at which the semivariance approaches the variance is referred to as
the range (or span) of the regionalized variable, and defines a neighborhood
within which all locations are related to one another.

For some arbitrary point in space, the neighborhood can be envisioned as a
symmetrical interval about the point. If the regionalized variable is stationary,
or has the same average value everywhere, any locations outside the interval
are completely independent of the central point, and cannot provide informa-
tion about the value of the regionalized variable at that location. Within the
neighborhood, however, the regionalized variable at all observation points is
related to the regionalized variable at the central location and hence can be
used to estimate its value. If a number of measurements are used, made at
locations within the neighborhood to estimate the value of the regionalized
variable at the central location, the semivariogram provides the proper weight-
ings to be assigned to each of these measurements.

The semivariogram expresses the spatial behavior of the regionalized vari-
able or its residual. A reasonable form for the semivariogram must be
assumed and used as a first approximation. A semivariogram tangent to the X
axis at the origin is described as parabolic and indicates that the regionalized
variable is exceptionally continuous. A variogram that is linear in form indi-
cates moderate continuity of the regionalized variable. A truly random vari-
able will have no continuity and its semivariogram will ba a horizontal line
equal to the variance. In some circumstances the semivariogram wiil appear
to not go through the origin but rather will assume some nonzero value. This
is referred to as the "nugget effect”. In theory, yo must equal zero. The
nugget effect arises because the regionalized variable is so erratic over a very
short distance that the semivariogram goes from zero to the level of the nug-
get effect in a distance less than the sampling interval.

In principle, the experimental semivariogram could be used directly to
provide values for estimatior. procedures. However, the semivariogram is
known only at discrete points representing distances Ah. In practice, semi-
variances may be required for any distance, whether a multiple of A or not.
For this reason, the discrete experimental semivariogram must be modelled by
a continuous function that can be evaluated for any desired distance. Fitting
a model equation to an experimental semivariogram is a trial-and-error pro-
cess, usually done by eye. Ideally, the model chosen to represent the semi-
variogram should begin at the origin, rise smoothly to some upper limit, then
continue at a constant level.
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The spherical model has these properties. For a distance, h, less than the
range, R, it is defined as:

3h _ A3
R T

for all distances up to the range, R, of the semivariogram. Beyond the range,
the semivariance, v,,, equals the variance, v,. The spherical model, shown in
the following diagram, usually is described as the ideal form of the semivario-
gram. Another that is sometimes used is the exponential model:

T = 7, (1-e MR

The exponential model, shown in the following diagram, never quite reaches
the limiting value of the sill, but approaches it asymptotically. Also, the
semivariance of the exponential model is lower than the spherical for all val-
ues of h less than the range.

The linear model, is simpler than either the spherical or exponential,
because it has onlv one parameter, the slope «. The model has the form:

Ta = oh

and plots as a straight line through the origin. This model cannot have a sill,
as it rises without limit. Sometimes, as shown in the following diagram, the
linear model is arbitrarily modified by inserting a sharp break at the sill value.
The use of such a model has been criticized because the kriging estimation
procedure presumes the semivariogram is a continuous smoothly varying
function. If the regionalized variable has been sampled at a sufficient density,
relative to the range, there will be no significant differences between estimates
made assuming a linear model and those obtained using a spherical or other
model.

Kriging

According to Davis (1986) kriging addresses a regionalized variable, which
is a naturally occurring property that has characteristics intermediate between
a truly random variable and one that is completely deterministic. Many geo-
logical surfaces, both real and conceptual, can be regarded as regionalized
variables. These are continuous from place to place and therefore must be
spatially correlated over short distances. However, points on an irregular
surface that are widely separated tend to be statistically independent. The
degree of spatial continuity of a regionalized variable . 1 be expressed by a
semivariogram. If measurements have been made at scattered sampling points
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and the form of the semivariogram is known, it is possible to estimate the
value of the surface at any unsampled location. This estimation procedure is
called kriging, named after K.G. Krige, a South African mining engineer and
pioneer in the application of statistical techniques to mine evaluation.

Kriging can be used to make contour maps, but unlike conventional con-
touring algorithms, it has certain statistically optimal properties. Perhaps
most importantly, the method provides measures of the error or uncertainty of
the contoured surface. Kriging uses the information from the semivariogram
to find an optimal set of weights that are used in the estimation of the surface
at unsampled locations. Since the semivariogram is a function of distance, the
weights change according to the geographic arrangement of the samples.

Point, or Punctual according to Davis (1986), is the simplest form of
kriging, in which the observations consist of measurements taken at dimen-
sionless points, and the estimates are made at other locations that are
dimensionless points. Punctual kriging is used in contour mapping where the
observations may be from a set of exploratory drill holes. Constructing a map
requires that estimations of the variable be made at closely spaced locations
over the map area. Once made, contour lines can be drawn through these
estimates.

To simplify the operation, it can be assumed that the variable being
mapped is statistically stationary, or free from drift. The value at an
unsampled location may be estimated as a weighted average of the known
observations, of weight W. The value, Y, at a point, p, is based on a small
set of nearby known points:

Y 'p = EW:Y,‘

It is expected that the estimated value, Y’ _, will differ somewhat from the true

(but unknown) value, Yp, by an amount tﬁat is called the estimation error,

€.
14

=", - 1)

If the weights used in the estimation equation sum to one, the resulting esti-
mates are unbiased. This means that, over a great many estimations, the
average error will be zero, as overestimates and underestimates will tend to
cancel one another. However, the estimates may scatter widely about the
correct values. This scatter can be expressed as the error variance, Sé ,

§2 = T, -Y)
€ n

or as its square root, the standard error of the estimate, S¢:
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As noted, it seems intuitively reasonable that nearby known points should
be most influential in estimating the value at an unsampled location, and that
more distant control points should be less influential. It also seems reasonable
to expect that the weights used in the estimation process, and the error in the
estimate, should be related in some way to the semivariogram.

For example, to estimated the value of Y at a point p from three nearby
points, using as our estimator a weighted average of the three known values:

Y ‘P = WlYl + WzYz + W3Y3

The weights are constrained to sum to one, so the estimate is unbiased if there
is no trend. Suppose that weight W, is chosen to ge equal to 1.0. Then,
weights W, and W3 must be zero and the estimate at p is:

Y', = 1.0Y, + 0.01, + 0.0,

or

= Yl

The estimation error is simply € = Y, - Y, since Y is the estimate Y, If
many other locations like Y, are atunated from points arranged in a manner
spatially similar to Y,, the estimation variance can be calculated as the aver-
age squared difference between these pairs of points. For convenience, these
other estimated locations may be called Y,; and the other estimating points
Y“. “eﬂ,:

S2 = Un Thy Yy - )P

The estimation variance is equal to twice the semivariance for a distance equal
to the separation between points Yp; and Yy,

A particular combination of weights have been chosen to arrive at an esti-
mate Y'P and to determine the estimation error. There are an infinite number
of other possible combinations of weights that could be chosen, each of which
will give a different estimate and a different estimation error. There is, how-
ever, only one combination that will give a minimum estimation error. It is
this unique combination of weights that kriging attempts to find.

Deriving the kriging equations requires calculus and will not be considered
here. A simple discussion is contained in Clark (1979) and a complete
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derivation is provided by Olea (1975). Optimum values for the weights can
be found by solving a set of simultaneous equations, which includes values
from a semivariogram of the variable being estimated. The weights are opti-
mal in the sense that the resulting estimates are unbiased and have minimum
estimation variance. No other linear combination of the observations can
yield estimates that have a smaller scatter around their true values.

To make a kriged estimate of the value Y’ at a point p from three known
observations, Y, Y,, and Y;, three weights, W;, W,, and W3 must be found
for the kriging equation. To find these requires the solution to a system of
three simultaneous equations:

Wy y(hyy) + Wy v(Byy) + W3 y(hy3) = v(hy)
W, y(hyy) + W, v(hy) + Wy 7(’123) = 'Y(’lzp)
Wy y(hy3) + Wy y(hy3) + W; y(hy;) = 7("3,)

In this notation, 7(hij) is the semivariance over a distance h corresponding to
the separation between points i and j. For example, y(h,;) is the semivariance
for a distance equal to that between known points 1 and 3; y(h,,) is the semi-
variance for a distance equal to that between known point 1 andP the location
p, where the estimate is to be made. The left-hand matrix is symmetrical
because h;; = hy;. It has zeroes along the main diagonal because h;; represents
the distance from a point to itself, which is zero. Assuming the semivario-
gram goes through the origin, the semivariance for zero distance is zero.
Values of the semivariance are taken from the semivariogram, which must be
known (or estimated) prior to kriging.

A fourth equation is needed to ensure that the solution is unbiased, by
constraining the weights to sum to one:

W1+W2+W381.0

This gives a set of four equations but only three unknowns. Since there are
more equations than unknowns, an extra degree of freedom can be used to
assure that the solution will have the minimum possible estimation error. This
is done by adding a slack variable, called a Lagrange multiplier, A, to the
equation set. The complete set of simultaneous equations has the following

appearance:

W, y(hyy) + Wy y(hyy) + Wy y(hyy) + A = 'Y(hlp)
Wy v(2) + Wy v(hy) + W v(hy3) + A = v(hy))

Wy v(hy3) + Wo y(hy3) + Wy y(hy3) + A = ‘Y(hap)
Wl + W2 + W3 +0=1

Rearranging in matrix form.
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[v(Byy) vy vy 1] [W] [vhyp)]
‘Y(hu) 7("27) 7("23) 1 W, ‘Y(th)
v(hy3) v(hy3) v(h33) 1 W, ‘Y(hs,,)
1 1 1 0 A 1

In general terms the matrix equation must be solved:

(4] - (W] = [B]

for the vector of unknown coefficients, [W]. The terms in matrix [A] and
vector [B] are taken directly from the semivariogram or from the mathemati-
cal function that describes its form. Once the unknown weights have been
determined, the variable at location p is estimated by:

Y’P = WlYl + WzYz + W3Y3

The estimation variance is:

The variance estimate is essentially the weighted sum of the semivariances for
the distances to the points used in the estimation, plus a contribution from the
A coefficient that is equivalent to a constant term. Kriging has two powerful
advantages over conventional estimation procedures such as those used for
contour mapping. Kriging produces estimates that, on average, have the
smallest possible error, and also produces an explicit statement of the magni-
tude of this error.

If the assumption is made that the errors of estimation are normally dis-
tributed about the true value, the standard error can be used as a confidence
band around the estimates. The probability that the true value at point p is
within one standard error above or below the value estimated is 68 percent,
and the probability is 95 percent that the true elevation lies within two stan-
dard errors.

Although a normal distribution can give a physically impossible number in
the case of variables which cannot have negative values, it is still used. A
normal distribution is used because of a lack of documentation for other func-
tions, such as log-normal and beta, even though they may give a more realis-
tic distribution. Also, a significant amount of data is necessary to establish
which function would give the most realistic distribution.
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Example

The following is a simple example of Kriging:
Given a set of three observations K, K,, and K3, estimate K, by kriging.

1-100 K2 = 130
-0 (X2 =13, y2 = 11)

(x1 =5, “ 1 \ L
value to be estimated

(x3=5, v3-5) (x0=13,y =5)
K3= 110 Ko=?

Assume a known semivariogram (i.e. variogram) model. In this case the
reistively simple linear semivariogram is used.

Ys 0 e e
'
o :4—- radius of influence of data
|
h |
| -
- » h
R=15
h = ol where ¢ = 2 =
Yh=2h forh S R=15

Using the matrix form of the kriging equation:
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Y(hyy) YR Yy 1] W] [y
YR Yhn) vl 1| | W, v(hy,)
Y9 v(hay) Y(hys) 1| W, v(hs)
1 1 1 of | 1

- - - e -

then:
r‘Y(x]‘xl) ¥0-x) v(x3-x;) 1] Pwl- P‘Y(xo'xl)q
Y& %) Yo x) Y&x3x) 1] W vlomx)
vy -xy) v(5p-x3) y3-x3) 1| [W; v(xo=x3)
L 1 1 of [A] Lt
30.
Y0 v® v© 17 [Mi] [vyao0)
1® ¥©0 110 1] |Wa| | @)
7(6) ¥(10) +(10) 1} |w, ¥(8)
1 1 1 0 A 1
where:
Y =2h
0.
Q) = 0
v6) = 12
v(@®) = 16
v(10) = 20
and:
01612 11 [W] 0

16 0 20 1 . W, 12
1220 01 W, 16
1 1 10] |y 1

Invert the matrix to solve for W, W,, W3, and

where the W’s are the kriging weights and A is the Lagrange multiplier.
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(W] [-o0s681 02727 34090  22mm

LA 022727 -.03409 011363  .409090] |12
w,| ~ | 034090 011363 04545  .363636) |16
Y 22272 .409050 363636 -10.9090 || 1

W, = -.09090

W, = .636363

Wy = 454545

A = 4.363636

Note that the W’s sum to 1 for the unbiased requirement.

Ko = WK, + WoK; + WK,

$0°
K, = 123.64
To obum the kriging variance:
S = Wy Ay + Wy qlny) + Wy vl + A
or.
Si = Wy v3) + Wy vimyxg) + W v(x-xp) + A
which is:
= W; v(10) + W, y(6) + W; v(8) + A
= -.09090(20) + .6363(12) + .4545(16) + 4.36
= 13.09
and:
S, = 3.62
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I K has a normal distribution then

Koo = Ko 25, with 95 percent probability
Ko + 25, = 123.64 + 2(3.62) = 130.88
Ky - 25, = 123.64 - 2(3.62) = 116.38

116.38 < K, < 130.88 with 95 percent confidence
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Appendix B
Data from Probability of Dual
Penetration Calculations

Apendix 8 Dets from Probsbility of Dual Penetration Calculstions
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Probability of Dual Penetration _

Sand body (meander belt) width, ft

500 |760 ]1,000 |1,260 | 1,500

Appendix B Data from Probability of Dual Penetration Calculations




Probability of Dual Penetration

Apendix B Deta from Probability of Dusl Penetration Celcuistions
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C2

NETRATION
"8
1

OF DUAL PE
e
o
1

PROBABILITY

WELL SPACING (w)

Plot of sand body meander belt width (W,) vs. Probability of the sand body

being penetrated by both wells, for selected well spacings (w) (from May
5)
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SAND-BODY WIDTH (ft.)

Plot of sandstone meander belt width (W,) vs. the probability of its pene-

tration by both wells, for well Spacing {w)
et al. 1985)

of 132 ft and 285 ft (after Lorenz

Appendix ¢ Software Verifications

—_—



M—P .. ‘
- o ... -
® @
£ : ° o«
H ° e,
gmr ot ° '.° )
-4 @ °
g le ® .
° ®e o°
°
° ® e ©
°
CT ® o o
S EASTING (meters)

Data point locations of a simulated iron ore deposit (after Clark 1979)
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Contour of percent iron kriged from a simulated iron ore deposit data (after

Clark 1979)
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o

Contour of standard deviation of the kriged estimates of percent iron from a

simulated iron ore deposit (after Clark 1979)
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Data point locations of Clark’s simulated iron ore deposit using Geo-Eas
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EASTING (meters)

Contour of percent iron kriged using Geo-Eas, with Clark’s simulated iron ore

N
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EASTING (meters)

Contour of standard deviation of the kriging estimates of percent iron using
Geo-Eas, with Clark’s simulated iron ore deposit data
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Appendix D
Sample Calculations

Sand Body Width Estimation

The measured thickness of 19.0 ft is multiplied by 1.1 to compensate for
compaction.

1904 X1.1=209f
The 20.9 ft is then converted to meters by multiplying by 3.048 X
10! o/ft.
20972 X (3.048 X107 mift) = 63T m
This 6.37 meters is then inserted into Leeder’s formula for calculating
channel width (W,).

W, = 6.811%

Where h is the thickness of 6.37 meters.

W, = 6.8(6.37Tm)'->
W, =117.73 m

The 117.73 meters is converted to ft by multiplying by 3.281 ft/m.

117.73m X 3.281 film = 386.27 fi
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This 386.27 ft is inserted into Lorenz et al.’s equation for calculating

meander belt width (W,)

W, = 7.44W;"
W, = 7.44(386.27 i)'
W. = 3050 £

The calculated meander belt width of 3050 ft is the estimate of the sand

body width.
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Appendix E Data Point Locations
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E2

Dats Points for the Rational for Exploration at the Rocky Mountain
Arsenal

Grid Coordinates
in Feet

East

North

Sand body
Thickness
in Feet

2178931
2183891
2187216
2188353
2188139
2178446

2178426
2184000
2181155
2183065
2186014
2183045
2184234
2181060
2186235
2181205
2181444
2186789

175779
175445
175608
185171
180921
179361
185575
185000
184639
182320
184035
180900
177874
178469
180686
180372
176282
178332

[

[

L - ]

[l d
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o

w

May’s Data Points at Rocky Mountain Arsenal ‘

Grid Coordinates Sand body

Thickness

in Feet

in Feet

East North
2184469 177203
2183284 180386
2178561 184632
2183045 180900
2182621 181912
2183308 183082
2183527 182723
2183023 183552
2182572 183996
2184218 185348
2185102 185785
2183794 185108
2184285 181477

46.0
44.0

Appendix E Data Point Locations




All Data Points at the Rocky Mountain Arsenal

Grid Coordinates
____in Feet
Rast North
2184469 177203
2183284 180386
2183045 180900
2182621 181912
2183527 182723
2184218 185348
2183794 185108
21083841 179243
2183065 182329
2184127 185118
2184378 184870
2184128 184868
2183878 184867
2183880 184617
2184130 184618
2184380 184620
2183780 184666
2178931 1757179
2183891 175445
2187216 175608
2188353 185171
2188139 180921
2178446 179361
2178426 185575

Appendix E Deta Point Locations

Sand body
Thickness
in Fest

N DO WUOWVMWOOO

CO0OO0OOCOO0OCWOVOVLIPOLOD ® O

=

Grid Coordinates Sand body
in Feest Thickness

East North in Feet
2181155 184639 0
2186014 184035 0
2181060 178469 0
2186235 180686 0
2181208 180372 0
2186789 178332 0
2178561 184632 0
2183308 183082 0
2183023 183552 0
2182572 183996 0
2185102 185785 0
2184285 181477 0
2183928 184867 5.8
2183877 185067 15.0
2184127 185018 14.0
2183894 182367 27.4
2183893 182617 31.3
2183891 182867 33.0
2183889 183117 25.2
2183900 181368 40.9
2184150 184641 6.0
2185002 181127 3.1
2184171 180698 29.0
2184234 177874 10.4
2184129 - 184718 10.0
2181444 176282 (1]
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Data Points for the Rational for Exploration on the Brazos River

E4

Grid Coordinates

in Feet
Rast

3275000
3275000
3275000
3275000
3275000
3273000
3275000
3275000
3275000
3258000
3242000
3225000
3225000
3213000
3208500
3196000
3177500
3190000
3183000
3183000
3187500
3170000
3160000

North

300000
325000
350000
373000
400000
425000
450000
475000
500000
305500
314500
325000
342000
356500
374000
361500
361500
377000
393000
411500
429000
423000
440000

Sand body
Thickneas
in Feet

Grid Coordi
_in Feet

nates Sand body
Thickness

East

3160000
3167000
3227500
3160000
3131000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3125000
3125000
3150000
3150000
3175000
3175000
3200000
3200000
3200000
3225000
3225000
3250000
3250000
3275000

North in Feet

459000 8
403000
375000
478000
482500
300000
325000
350000
375000
400000
425000
450000
475000
500000
300000
500000
300000
500000
300000
500000
275000
300000
500000
275000
500000
275000
500000
275000

0000000000000 O0DO0DO0OO0O0O0ODOOODODODOOO
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Data Points for the Grid Method of Exploration on the Brazos River _

Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness
Bast North in Feet East North in Feet

3100000 300000
3100000 325000
3100000 350000
3100000 375000
3100000 400000
3100000 425000
3100000 450000
3100000 475000
3100000 500000
3125000 300000
3125000 450000
3125000 475000
3125000 500000
3150000 300000
3150000 400000
3150000 425000
3150000 450000
3150000 475000
3150000 500000
3175000 300000
3175000 350000
3175000 375000
3175000 400000

3175000 425000 80
3175000 450000 80
3175000 475000
3175000 500000
3200000 275000
3200000 325000
3200000 350000
3200000 375000
3200000 400000
3200000 425000
3200000 450000
3200000 500000
3225000 275000
3225000 300000
3225000 325000
3225000 350000
3225000 375000
3225000 500000
3250000 275000
3250000 300000
3250000 325000
3250000 350000
3250000 500000
3275000 275000
3275000 300000
3275000 325000
3275000 350000
3275000 375000
3275000 400000
3275000 425000
3275000 450000
3275000 475000
3275000 500000

o 0o

[ o ™
COO0O0O0O0O0O00ODO0O0OO0O0ODO0OO0OO0ODO0OOOCO
[
00000000000 ODO0ODOO0OODODODODODDODOOO

[ 3
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Data Points for the Brazos River
10,000 #t Grid 7 .

Grid Coordinates
in Feet

Bast

3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3100000
3110000
3110000
3110000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3120000
3130000
3130000
3130000
3130000
3130000
3130000
3130000

North

300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
300000
310000
320000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
300000
310000
320000
330000
340000
350000
360000

Sand body
Thickness

in Feet

QO00O0O0O0O0DOUO0O0O0OOOO0O0O0O00O0O0OOLO0000000DO0O0O0DOLOLOOLOOO0OO0O000OOOOO

Grid Coordi
in Feet

nates Sand body
Thickness

East

North in Feet

3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3110000
3120000
3120000
3120000
3120000
3120000
3120000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3130000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3140000

- 500000

330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
300000
310000
320000
330000
340000
350000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000

300000
310000
320000
330000
340000
350000
360000
370000
380000
390000

o o e
0000000000000 000DO0DO000LO0DO0DO00O0O0O0O0DODO0O0OO0D0DODOO0OO0OOOOOODOOO
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Data Points for the Brazos River
10,000 ft Grid |

Grid Coordinates

in Fest

East

North

3130000
3130000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3140000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150000
3150060
3160000
3160000
3160000
3170000
3170000
3170000
3170000
3170000
3170000
- 3170000
3170000
3170000
3170000
3170000
3170000
3170000
3170000
3170000
3170000
3170000
3170000

370000
380000
420000
430000
440000
450000
460000
470000
480000
490000
500000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
480000
490000
500000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
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Sand body
Thickness
in Feet

[ 3 [ - X X X ]
CR-R-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N N N N N RN R RN X-N-X-X-K~

- XX
00000

Grid Coordi
in Feet

nates

TEast

North

Sand body
Thickness
in Feet

3140000
3140000
3150000
3150000
3150000
3150000
3150000
3150000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3160000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000
3180000

400000
410000
450000
460000
470000
480000
490000
500000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000

440000

450000
460000
470000
300000
310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000




Data Points for the Brazos River |
10.000 ft Grid , .

Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness

———

Rast North in Feet East North in Feet

3170000 480000 3190000 300000
3170000 490000 3190000 310000
3170000 500000 3190000 320000
3190000 330000 3200000 340000
3190000 340000 © 3200000 350000
3190000 350000 3200000 360000
3190000 360000 3200000 370000
3190000 370000 3200000 380000
3190000 380000 3200000 390000
3190000 390000 3200000 400000
3190000 400000 3200000 410000
3190000 410000 3200000 420000
3190000 420000 3200000 430000
3190000 430000 3200000 440000
3190000 440000 3200000 450000
3190000 450000 3200000 460000
3190000 460000 3200000 470000
3190000 470000 3200000 480000
3190000 480000 3200000 490000
3190000 490000 3200000 500000
3190000 500000 3210000 280000
3200000 280000 3210000 290000
3200000 290000 3210000 300000
3200000 300000 3210000 310000
3200000 310000 3210000 320000
3200000 320000 3210000 330000
3200000 330000 3210000 340000
3210000 350000 3220000 360000
3210000 360000 3220000 370000
3210000 370000 3220000 380000
3210000 380000 3220000 390000
3210000 390000 3220000 400000
3210000 400000 3220000 410000
3210000 410000 3220000 420000
3210000 420000 3220000 430000
3210000 430000 3220000 440000
3210000 440000 3220000 450000
3210000 450000 3220000 460000
3210000 460600 3220000 470000
3210000 470000 3220000 480000
3210000 480000 3220000 490000
3210000 490000 3220000 500000
3210000 500000 3230000 280000
3220000 280000 3230000 290000
3220000 290000 3230000 300000
3220000 300000 3230000 310000
3220000 310000 3230000 320000
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Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness
East North in Feet East North in Feet

3220000 320000 3230000 330000
3220000 330000 3230000 340000
3220000 340000 3230000 350000
3220000 350000 3230000 360000
3230000 370000 3240000 380000
3230000 380000 0 3240000 390000
3230000 390000 3240000 400000
3230000 400000 3240000 410000
3230000 410000 3240000 420000
3230000 420000 3240000 430000
3230000 430000 3240900 440000
3230000 440000 3240000 450000
3230000 450000 3240000 460000
3230000 460000 3240000 470000
3230000 470000 3240000 480000
3230000 480000 3240000 490000
3230000 490000 3240000 500000
3230000 500000 * 3250000 280000
3240000 280000 3250000 290000
3240000 290000 3250000 300000
3240000 300000 3250000 310000
3240000 310000 3250000 320000
3240000 320000 3250000 330000 .
3240000 330000 3250000 340000
3240000 340000 3250000 350000
3240000 350000 3250000 360000
3240000 360000 3250000 370000
3240000 370000 3250600 380000
3250000 390000 3260000 400000
3250000 400000 3260000 410000
3250000 410000 3260000 420000
3250000 420000 3260000 430000
3250000 430000 3260000 440000
3250000 440000 3260000 450000
3250000 450000 3260000 460000
3250000 460000 3260000 470000
3250000 470000 3260000 480000
3250000 480000 3260000 450000
3250000 490000 3260000 500000
3250000 500000 3270000 280000
3260000 280000 3270000 290000
3260000 290000 3270000 300000
3260000 300000 3270000 310000
3260000 310000 3270000 320000
3260000 320000 3270000 330000
3260000 330000 3270000 340000
3260000 340000 3270000 350000
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Data Points for the Brazos River
10.000 #t Grid

Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness
East North in Feet _East North in Feet

3260000 350000
3260000 360000
3260000 370000
3260000 380000
3260000 390000
3270000 410000
3270000 420000
3270000 430000
3270000 440000
3270000 450000
3270000 460000
3270000 470000
3270000 480000
3270000 490000
3270000 500000
3280000 280000
3280000 290000
3280000 300000
3280000 310000
3280000 320000
3280000 330000
3280000 340000
3280000 350000
3280000 360000
3280000 370000
3280000 380000
3280000 390000
3280000 400000
3280000 410000

3270000 360000
3270000 370000
3270000 380000
3270000 390000
3270000 400000
3280000 420000
3280000 430000
3280000 440000
3280000 450000
3280000 460000
3280000 470000
3280000 480000
3280000 490000
3280000 500000
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CO0ON0DO0ODO0DO0DO0ODO0OO0ODOOO0OO0ODOOOO0OOOODOOCOOO

E10 Appendix E  Data Point Locations




Data Points for the Salt River
1.000 £t Grid 7 ,

Grid Coordinates Sand body Grid Coordinates Sand body
_in Fest Thickness in Feet Thickness
East North in Feet East North in Feet

435000 875000 17.5 437000 877000
435000 876000 17.5 437000 878000
435000 877000 17.5 437000 879000
435000 878000 17.5 437000 88000C
435000 879000 437000 881000
435000 880000 437000 882000
435000 881000 437000 883000
435000 882000 437000 884000
435000 883000 437000 885000
435000 884000 * 438000 875000
435000 885000 438000 876000
436000 875000 438000 877000
436000 876000 438000 878000
436000 877000 438000 879000
436000 878000 438000 880000
436000 879000 438000 881000
436000 880000 438000 882000
436000 881000 438000 883000
436000 882000 438000 884000
436000 883000 438000 885000
436000 884000 439000 875000
436000 885000 439000 876000
437000 875000 439000 877000
437000 876000 439000 878000
439000 879000 441000 881000
439000 880000 441000 882000
439000 881000 441000 - 883000
439000 882000 441000 884000
439000 883000 441000 885000
439000 884000 442000 875000
439000 885000 442000 876000
440000 875000 442000 877000
440000 876000 442000 878000
440000 877000 442000 879000
440000 878000 442000 880000
440000 879000 442000 881000
440000 880000 442000 882000
440000 881000 442000 883000
440000 882000 442000 884000
440000 883000 442000 885000
440000 884000 443000 875000
440000 885000 443000 876000
441000 875000 443000 877000
441000 876000 443000 878000
441000 877000 443000 879000
441000 878000 443000 880000
441000 879000 443000 881000
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Data Points for the Salt River
1,000 ft Grid | | |

Grid Coordinates Sand body Grid Coordinates Sand body
_in Feet Thickneas in Feet Thickness
East North _in Feet East North in Feet

441000 880000
443000 883000
443000 884000
443000 885000
875000
876000
877000
878000
877000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
800000
810000
882000
883000
884000
449000 885000

443000 882000
445000 884000
445000 885000
446000 875000
446000 876000
446000 877000
446000 878000
446000  "879000
446000 880000
446000 881000
446000 882000
446000 883000
446000 884000
446000 885000
447000 875000
447000 876000
447000 877000
447000 878000
447000 879000
447000 880000
447000 881000
447000 882000
447000 883000
447000 884000
447000 885000
450000 877000
450000 878000
450000 879000
450000 880000
450000 881000
450000 882000
450000 883000
450000 884000
450000 885000
451000 875000
451000 876000
453000 878000
453000 879000
453000 880000
453000 881000
453000 882000
453000 883000
453000 884000
453000 8385000
454000 875000
454000 876000
454000 877000
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Data Points for the Sait River
1.000 ft Grid |

Grid Coordinates
in Feet

Bast

North

Sand body
Thickness
in Feet

450000
450000
454000
454000
454000
454000
454000
454000
455000
455000
455000
455000
455000
455000
435000
455000
455000
455000
455000
456000
456000
456000
456000
456000
456000
456000
458000
458000
459000
459000
459000
459000
459000
459000
459000
459000
459000
459000
459000
460000
460000
460000
460000
460000
. 460000
460000
460000

875000
876000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
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454000
454000
456000
456000
456000
456000
457000
457000
457000
457000
457000
457000
457000
457000
457000
457000
457000
458000
458000
458000

458000

458000
458000
458000
458000
458000
461000
461000
461000
461000
461000
461000
461000
461000
461000
461000
461000
462000
462000
462000
462000
462000
462000
462000
462000
462000
462000

878000
879000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000
885000
875000
876000
877000
878000
879000
880000
881000
882000
883000
884000

Sand body
Thickness
in Feet
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Data Points for the Salt River
1,000 ft Grid |

Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness
—East ~  _North  _in Feet _East ~ North in Feet
460000 883000 0 462000 885000 0
460000 884000 1] 463000 875000 0
460000 885000 0 463000 876000 0
463000 877000 0 465000 879000 17.5
463000 878000 0 465000 880000 17.5
463000 879000 17.5 465000 881000 0
463000 880000 17.5 465000 882000 (o]
463000 881000 0 465000 883000 ]
463000 882000 0 465000 884000 ]
463000 883000 0 465000 885000 0
463000 884000 0 466000 875000 (1]
463000 885000 0 466000 876000 0
464000 875000 0 466000 877000 0
464000 876000 0 466000 878000 17.5
464000 877000 0 466000 879000 17.5
464000 878000 17.5 466000 880000 17.5
464000 879000 17.5 466000 881000 0
464000 880000 17.5 466000 882000 0
464000 881000 0 466000 883000 0
464000 882000 o 466000 884000 o
464000 883000 0 466000 885000 0
464000 884000 0 467000 875000 0
464000 885000 0 467000 8760350 0
465000 875000 0 467000 877000 0
465000 876000 0 467000 878000 17.5
465000 477000 0 467000 879000 17.5
465000 878000 17.5 467000 880000 17.5
467000 881000 0 469000 883000 0
467000 882000 0 469000 884000 0
467000 883000 0 469000 885000 0
467000 884000 0 470000 875000 0
467000 885000 o 470000 876000 0
468000 875000 0 470000 877000 0
468000 876000 0 470000 878000 17.5
468000 877000 0 470000 879000 17.5
468000 876000 17.5 470000 880000 17.5
468000 879000 17.5 470000 881009 17.5
468000 880000 17.5 470000 882000 0
468000 881000 0 470000 883000 (1]
468000 882000 o 470000 884000 0
468000 883000 o 470000 885000 0
468000 884000 0 471000 875000 0
468000 885000 0 471000 876000 0
469000 875000 0 471000 877000 0
469000 876000 0 471000 878000 17.5
469000 877000 0 471000 879000 17.5
469000 878000 0 471000 880000 17.5
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Data Points for the Salt River
1.000 ft Grid ‘

Grid Coordinates Sand body Grid Coordinates Sand body
in Feet Thickness in Feet Thickness
Kast North in Feet _East North in Feet

469000 879000 17.5 471000 881000 1
469000 880000 17.5 471000 882000 1
469000 881000 17.5 471000 883000
469000 882000 471000 884000
471000 885000 474000 876000
472000 875000 474000 877000
472000 876000 474000 878000
472000 877000 474000 879000
472000 878000 474000 880000
472000 879000 474000 881000
472000 880000 474000 882000
472000 881000 474000 883000
472000 882000 474000 884000
472000 883000 474000 885000
472000 884000 475000 875000
472000 885000 475000 876000
473000 875000 475000 877000
473000 876000 475000 878000
473000 877000 475000 879000
473000 878000 475000 880000
473000 879000 475000 881000
473000 880000 475000 882000
473000 881000 475000 883000
473000 882000 475000 884000
473000 883000 475000 885000
473000 884000 451000 878000
473000 885000 451000 879000
474000 875000 451000 880000
451000 881000 451000 885000
451000 882000 452000 875000
451000 883000 452000 876000
451000 884000 452000 877000

452000 878000

452000 879000

452000 880000

452000 881000

452000 882000

452000 883000

452000 884000

452000 885000

453000 875000

453000 876000

453000 877000
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Appendix F
Variograms

Appendix F Variogreme

F1




F2
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Sth Data Set
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MAY'S Data Set
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Boundary -

o T

10 i 20 ' 30
DISTANCE in TEN THOUSANDS

Rational for Exploration
1st Definition Set
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400+
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Brazos river rationale for exploration
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Brazos river rationale for exploration

Appendix F Variograms




4th Detinition Set

16 24
DISTANCE in TEN THOUSANDS

o J a )

5th Definition Set
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16 24

DISTANCE in TEN THOUSANDS

o T T T

Brazos river rationale for exploration
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6th Definition Set )
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0 T8 ! 16 ' 24
DISTANCE in TEN THOUSANDS

7th  Definition Set
1600+ °
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)} 2 *
L o O o0
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OJ 4 L §
0 8 v 16 24
DISTANCE in TEN THOUSANDS

Brazos river rationale for exploration

F8

Appendix F Variograms




8th Definition Set
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Brazos river rationale for exploration
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10th Definition Set <
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Brazos river rationale for exploration
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12th Definition Set

2400 -

16 b 24
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13th Definition Set
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L
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800 =
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Brazos river rationale for exploration
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14th Definition Set -
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Brazos river rationale for exploration
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Appendix H Croes Sectional and Tabular Stretigraphic Information

H1




H2

- 5280
746
=1 SM .
:-—i Alluvium — 5260
Denver
CL
,——f“- E
— 5240 W
' <
S
CH =
< .
— 5220 3
g
w
5\ ~ \
SM |
-1 cn —| 5200
0 FEET 1000
L ! - 5180

Cross-sectional information for boring 746 (from Braughton et al. 1979)
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Cross-sectional information for boring 758 (from Braughton et al. 1979)
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Tabular Data for all Wells in the Rocky Mountain Arsenal Study Site (after
Ebasco et al. 1989) ‘

Section Zone Sandstone
and or Top Base
Well # Unit Elevation, ft Elevation, ft Thickness, ft

01005 AS 5201.6 5174.6 27.
01005 AU 5211.6 5204.6 .
01008 AL 5181.2 5176.2 .
01008 AM 5209.9 5190.7 19.
01015 AU 5216.5 5206.1 10.
01017 AM 5182.6 5177.5 .
01017 AU 5193.7 5183.1 10.
01022 AM 5154.5 5147.5 ]
01022 AU 5171.5 5162.9 .
01023 10 $107.0 5095.0 12.
01025 AU 5173.9 5166.9 .
01026 AL 5152.4 $146.9 .
01028 AS 5197.2 5190.2 .
01028 5206.1 T 5202.2 .
01029 5156.2 5142.7 13.
01029 5184.7 5181.7 .
01031 5208.1 5206.2 .
01032 5184.0 5177.6 .
01034 5174.0 5168.6 .
01034 5193.5 5192.2 .
01035 5162.0 5156.5
01036 5202.9 5201.6 .
01037 5161.9 $160.6 .
01037 5172.6 5165.8
01039 5192.9 5191.4 .
| 01040 5165.0 5157.1

01040
01042
01042
01043
01046
01047
01047
01047
01047
01047
01048
01050

5173.4 5170.3
5171.2 5168.8
5202.2 5201.0
5112.0 . 5106.8

0.0 0.0
5093.8 5074.0
5114.9 5107.6
5157.8 5156.3
5185.6 5182.6
5192.3 5189.3
5070.0 5045.3
5203.4 5157.4
01067 5199.0 5160.1
01067 5218.0 5208.9
01068 vC 5283.9 5238.6
01071 5092.6 5078.7
01071 5129.1 5118.6
01071 5075.1 5070.6
01071 5174.6 5172.1
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Tabular Data for all Wells in the Rocky Mountain Arsenal Study Site (after
Ebasco et al. 1989)

Section Zone Sandstone
and or Top Base
Well # Unit Elevation, ft Elevation, ft Thickness, ft

01071
01071
02004
02009
02010
02010
02012
02013
02015
02016
02018
02019
02019
02021
02022
02022
02024
02024
02027
02027
02028
020130
02030
02030
02031
02032
02033
02035
02035
02035
02038
02039
02039
02041
02041
02042
02043
02044
02044
02045
02045

5186.1 $185.1
$200.5 5195.1
5208.1 5162.8
5105.7 5103.7
5086.8 5077.9
5072.9 5044.9
5114.6 5109.6
5063.6 5048.9
5149.2 5134.2
5091.7 5075.2
5221.4 5208.7
5165.0 5159.0
5187.5 5169.4
5182.0 5167.4
5138.3 5125.5
5154.0 5143.0
5178.3 5177.2
5191.1 5186.2
$153.4 5142.9
5160.2 5156.6 .
5117.4 5103.7
5177.9 5176.0
5196.4 5195.0
5219.6 5208.3
5135.5 5128.6
5190.1 5181.9
5127.2 5102.6
51680.0 5177.8
5197.5 5191.9
5207.0 $202.5
5204.1 5190.6
5154.0 5147.0
5175.9 5159.7
5179.2 5167.7
5200.0 5197.0
5164.0 5143.5
5216.1 5206.2
5149.2 5134.2
5185.2 5176.6
5195.1 5184.0
5206.6 5194.1
02045 5227.1 5217.6
02046 5154.6 5128.9
02047 5218.7 5174.7
02048 5138.7 5136.0
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Tabular Data for all Wells in the Rocky Mountain Arsenal Study Site (after
Ebasco et al. 1989) _

Section Zone Sandstone
and or Top Base
Well ¢4 Unit Elevation, ft Elevation, ft Thickness, ft

35001 1u 5165.0 5153.0
35004 AL $178.0 5172.5
3so005 1u 5168.0 5148.0
35006 1v 5159.0 5133.0
35009 1v 5175.0 5156.0
35009 AL 5197.0 5181.0
35010 1 5148.0 5142.0
35012 1 5145.0 5129.3
35012 1v 5163.0 5156.0
35015 AU 5213.4 5212.0
35016 1U $175.0 5156.0
35017 1 5128.0 5122.0
3soles 1T 5172.0 . 5136.0
35019 2 5$127.0 5115.0
35021 1v 5163.4 5143.8
35021 AL 5192.5 5181.9
35024 AS 5215.8 5178.0
35027 AL 5173.6 5166.9
35027 AU 5211.1 5204.6
35028 1v 5147.0 5142.0
35030 AS 5210.4 5199.9
35032 1 5143.0 5121.0
35033 1U 5161.0 5143.0
35033 5097.0 5091.0
35035 5188.0 5159.0
35036 5143.0 5123.0
35038 5148.5 5138.5
35039 5128.5 5090.0
35041 5137.0 5124.0
35041 5110.0 5089.0
35042 5105.0 5084.0
35045 5169.0 5157.0
35046 5168.4 5152.4
35046 5173.4 5172.4
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35055 5212.9 5205.8
35055 © 5250.4 5231.4
35056 10 5151.0 5127.0
35059 iv 5162.0 5148.0
35060 2 5128.0 5121.0
35062 AL 5179.3 5166.5
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Tabular Data for all Wells in the Rocky Mountain Arsenal Study Site (after
Ebasco et al. 1988) _

Section Zone Sandstone
and or Top Base.

Boring ¢ Vell # Unit Elevation, ft Elevation, ft Thickness, ft

1147 35063 1v 5152.0 5131.0 21.0
1184 35066 AL 5191.0 5174.3 16.7
1184 35067 1v 5169.0 5153.5 15.5
1184 35068 1 5136.0 5115.0 21.0
1184 35068 2 5115.0 5097.0
1184 35068 3 5093.0 5077.0
1188 35070 1v 5156.3 5153.2
1250 35071 5135.7 5114.2
1250 35071 5209.6 5181.0
1250 35072 5102.3 5093.0
1251 35073 5209.0 5181.9
1251 35074 5175.9 5170.9
35078 5125.0 5120.8
35078 5170.0 5156.5
35078 5108.0 5100.2
35081 5136.7 5133.7
35081 5170.7 5161.4
3sosi 5122.7 5101.0
3sos2 5112.0 5106.0
35082 5147.0 5136.0 -
35082 5097.7 5091.0
35082 5077.1 5044.0
35082 5184.0 5182.0
35082 5208.0 5200.0
35082 $226.0 5224.0
35088 5119.0 5108.3
35088 5166.5 5147.3
35089 5091.5 5083.0
35089 5077.5 5046.5
36002 5200.5 5197.0
36003 5217.8 5211.8
36004 5221.6 5218.7
36007 5220.3 5214.8
36008 5219.2 5202.9
36009 5214.9 5210.1
36010 5210.5 5201.3
36011 5210.9 5201.8
36012 $5213.6 5210.5
36020 5222.9 5206.9
36024 5205.5 5198.7
36025 $210.6 5204.4
36026 5213.6 5203.6
36027 5216.7 5206.7
36029 5216.6 5210.8
36033 5222.0 5207.0
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Section Zone Sandstone
and or Top Base
Boring # Well # Unit Elevation, ft Elevation, ft Thickness, ft

RPL14 36034
co101 36036
C0103 36037
Co109 36038
col13 36039
C0116 36043
C0201 36044
707 36061
707 36061
707 36061
36062

36063

711 36066
36066

5223.0 5209.0 14.0
5218.9 5191.5
5216.8 5185.5
5214.1 5181.1
5209.1 5183.9
5196.3 5190.0
5221.2 5180.3
5182.3 5182.1
5199.9 5191.1
5209.8 5209.6
5174.8 5154.9
5176.8 5159.0
5146.7 5141.3
5169.9 5156.3
36066 5216.8 5206.4
36071 5202.5 5193.0
36072 AL 5184.8 5170.7
36076 5223.6 5205.4
36078 5214.0 5208.0
36079 5142.0 $132.0
36079 5163.0 5158.0
36081 $145.0 5140.0
36081 5181.7 5166.9
36104 5196.5 5176.9
36105 5169.9 5162.2
36105 5186.8 5169.9
36105 5209.2 5201.7
36110 5196.6 5193.5
36113 5168.0 5167.5
36113 5201.0 5198.0
36113 5207.3 5206.3
k13903 5146.0 5126.0
36114 5126.0 5100.0
36116 5257.8 5244.8
36117 5224.3 5209.8
36118 5209.0 5201.0
36119 5176.9 5158.6
36121 5180.6 5174.8
36122 5158.6 5151.9
36147 5162.6 5161.4
36147 5212.3 5204.9
36147 5219.0 5216.5
36147 5224.2, 5222.7,
36148 5110.0, 5090.0,
36148 5090.0 5074.0
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Tabular Data for all Wells in the Rocky Mountain Arsenal Study Site (after
Ebasco et al. 1989) 7 ‘

Section Zone Sandstone
and or Top Base

Boring ¢ Well $ Unit Elevation, ft Elevation, ft Thickness, ft

1228 36149 10 5175.0, 5155.q,
1228 36150 1 5144.0 5110.0
1228 36150 AS 5223.6 $204.6
1234 36154 10 5126.7 5116.3
1234 36155 AL 5160.1 5156.0
1234 36155 B 5243.3 5231.3
1235 36156 10 5125.0 5117.5
1235 36156 AL 5155.0 5153.0
1235 36156 AM 5199.5 5171.2
36169 5169.0 5165.0
36170 5114.0 5095.0
3él170 5137.0 5134.0
36170 5095.0 5073.0
36170 5158.0 5153.0
36179 5141.0 5118.0
36179 5163.0 5152.0
36179 5118.0 5090.0
36182 5222.0 5174.0
36183 5157.0 5143.0
36183 5164.0 5162.0
02032 5170.1 5164.1
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Note: Zone or Unit AS is the "target" sand.
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ell Logging Co.: Western Well Logging, Inc.
lient: U.S. Army Corp of Engineers

ole #: 1123 (SP-8) Date: 18 July, 1980
cation:
th Logged: 147' Depth Drilled:
ire Line Operator: P. O'Brian Unit/Iastrument #: L-4
logist/Witness: Engineer: Maj Zebell
Time S8ince
luid Type: Fluid Level: Ciroculation:
it sise: Cased Interval:
nside Casing Diameter: Casing Thickness:
GAMMA ELECIRIC
robe #: 64G Resistivity Scale (Ohm/in): 40
ge: 500 (full) Spontaneous Potential (mv/in):
ime Constant: 1 Logging Speed (Ft/min): 10

hart S8cale (CP8/in):
ging Speed (Pt/min): 10

50+

100+

Y 10d & Q —
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Boring 1123 Continued
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ell Logging Co.:
1124 (SP-13)

ire Line Operator: P.

nside Casing Diameter:

robe #: 64G

ge: 500 (full)
ime Constant: 1
hart S8cale (CP8/in):

Army Corp of Engineers

Fluid Level:

ogging Speed (Ft/min): 10

Western Well Logging, Inc.
Date: 18 July, 1980
Depth Drilled:
O'Brian Unit/Instrument #: L-4
Engineer: Maj Zebell
Time Since
Circulation:
Cased Interval:
Casing Thickness:
ELECTRIC
Resistivity Scale (Ohm/in): 40
Spontar.jous Potential (mv/in):
Logging Speed (Ft/min): 10
oT
sot
1104 ; Q —

14
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Boring 1124 Continued
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ell Logging Co.:
U.S. Corps of Engineers
1143 (SP-16)

pth Logged: 165°'
ire Line Operator:
logist/Witness:

Luby

ime Constant: 1
hart Scale (CP8/in): 10
ging Speed (Ft/min): 15

Colorado Well Logging, Inc.

Date:
Rocky Mountain Arsenal (Fremont Co.) Colorado
Depth Drilled:
Unit/Instrument #:
Lawson Smith Engineer:
Time Since

luid Type: Bentonite PFluid Level: 72' Circulation: 2 Hr
it Bize: 4.5" Cased Interval: 0-69'
nside Casing Diameter: Casing Thickness:
ELECIRIC
robe #: 47 Resistivity Scale (Ohm/in): 10
ge: 50 (full) Spontaneous Potential (mv/in): 5

Logging Speed (PFPt/min):

Nov. 21, 1980

167!
93

25

—
+ —_
mV -1
Y
-
J

50

100

110

16
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Boring 1143 Continued
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ell Logging Co.:

le #3 1148 (SP-12)
pth Logged: 98'

ire Line Operator: Mark Luby Unit/Instrument #: 2500
logist/witness: Mr. Hunt Engineer:
Time 8ince
luid Type: Water Fluid Level: Circulation: 15 Hrs

it 8ises 5 5/8"
nside Casing Diameter: . Casing Thickness:

robe #: 256

ge: 50 (full)

ime Constant:
hart Scale (CP8/in):
ging Speed (Ft/min): 10

Colorado Well Logging, Inc.
Corps of Engineers

tion: Sec. 2, Adams Co., Colorado

Date: 3 Dec., 1980

Depth Drilled: 104.8'

Cased Interval:to 44.5'

ELECTRIC
Resistivity Scale (Ohm/in): 20 é
Spontaneous Potential (mv/in):
Logging Speed (Ft/min): 25

mV

<100%
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ell Logging Co.: Digilog, Inc.

lient: Corps of Engineers

le #: 1153 (SP-9) Date: 02/14/81

tion: Rocky Mountain Arsenal, Sec. 2, T2S, R67W

pth Logged: 109' Depth Drilled: 109'

ire Line Operator: R. Bouffard Unit/Instrument #: D-2
logist/witness: Lt Col Zebell BEngineer:

Time S8ince
luid Type: Yluid Level: Circulation:
it sise: 5 5/8" Cased Interval: 0-31'
nside Casing Diameter: 6" Casing Thickness:
GAMMA ELECTRIC
robe #: 1555 Resistivity Scale (Ohm/in): 20
ge: 10/.5" spontaneous Potential (mv/in):
ime Constant: 2 Logging Speed (Ft/min): 10

hart S8cale (CP8/imn): 10
ing 8peed (Ft/min): 10

=

" 504
1004
Q

1104
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ell Logging Co.: Digilog, Inc.
lient: Corps of Engineers
le #3 1155 (SP-15) Date: 3-11-81

tion: Rocky Mtn. Arsenal, Adams Co., Colorado
pth Logged: 109' Depth Drilled: 111°'
ire Line Operator: D. Delaney Unit/Instrument #: D-5

logist/witness: R. Hunt Engineer:

Time Since

luid Type: Fluid Level: Circulation:
it sise: 5 5/8" Cased Interval: 0-58'
nside Casing Diameter: 6" Casing Thickness:

GAMMA ELECTRIC
robe f: 1555 Resistivity Scale (Ohm/in): 10

ges 10/.5" Spontaneous Potential (mv/in): 5

ime Constant: 2 Logging Speed (Ft/min): 10

hart Scale (CP8/in): 10
ing Speed (Ft/min): 10

1104

110 Appendix | Geophysical Logs




ell Logging Co.: Digilog, Inc.
lient: Army Corp of Engineers
ole #3 1160 (SP-2)

tiont R.M.A.

pth Logged: 92°'

ire Line Operator: C. Jones
logist/witness: Richard Hunt

luid Type: Fluid Level:

obe #: 1555

ge: 20/.5"

ime Constant: 2

t BScale (CP8/in): 20
ing Speed (Ft/min): 20

Date: June 16, 1981

Depth Drilled:

Unit/Instrument #:

Bngineer:
Time S8ince

92.8'

Circulation:

Cased Interval:

Casing Thickness:

ELECTRIC
Resistivity Scale (Ohm/in):
Spontaneous Potential (mv/in): 10|
Logging Speed (Ft/min):

20

D-1

20

Oﬁr

my

50

1004

0
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ell Logging Co.: Digilog,
lient: Corps of Engineers
1185 (N-6)

Inc.

Date:

RMA, Adams Co., Colorado

th Logged: 112° Depth Drilled: 117'
ire Line Operator: C. Davis Unit/Instrument #: D-7
logist/wWwitness: Richard Hunt BEngineer:
Time Bince
luid Type: Fluid Level: Circulation:
it size: 5 5/8" Cased Interval: 0-39'
nside Casing Diameter: Casing Thickness:
ELECTIRIC
robe #: 1482 Resistivity Scale (Ohm/in): 15
e: 10/.5" Spontaneous Potential (mv/in):

6/23/81

fﬁ

ime Constant: 2 Logging Speed (Pt/min): 15
hart 8cale (CP8/imn): 10
ging Speed (Ft/min): 15
°T
504
—_——
- e

1

112
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ell Logging Co.: Digilog, Inc.
lient: Army Corps Engineers
ole #: 1188 (E-1) Date: June 16, 1981
tion: R.M.A.
pth Logged: 81' Depth Drilled: 83'
ire Line Operator: C. Jones Unit/Instrument #: D-1
logist/witness: Richard Hunt Engineer:
Time S8ince
luid Type: Pluid Level: Circulation:
it sise: Cased Interval:
nside Casing Diameter: Casing Thickness:
GANMA ELECTRIC
robe #: 1555 Resistivity S8cale (Ohm/in): 20
ge: 20/.5" Spontaneous Potential (mv/in): 10
ime Constant: 2 Logging Speed (Ft/min):
hart S8cale (CP8/in): 20
ging Speed (Ft/min): 20
°T
+ -
mv
so+
Y
o Q
90+
13
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ell Logging Co.s

ole #: 1228 (AP-1) Date: 30 April, 1982
cation: Sec. 36, Colorado
pth Logged:s 168' Depth Drilled:
ire Line Operator: Mike Hughes Unit/Instrument #: D-4
logist/wWitness: Richard Hunt Engineer:
Time 8Since
luid Type: Fluid Level: Circulation:
it Bise: Cased Interval:
nside Casing Diameter: Casing Thickness:
ELECTRIC
robe #: 1555 Resistivity Scale (Ohm/in): 10
ge: 10/.5" Spontanecus Potential (mv/in): 1%
ime Constant: 2 20

hart Scale (CP8/in):

Digilog, Inc.
Army Corps of Engineers

ing Speed (Pt/min): 20

Logging Speed (Ft/min):

mVv

[ {1 3

100

114
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Boring 1228 Continued

115
Appendix | Geophysicel Logs




ell Logging Co.:
lient: U.S. Army
ole #: 1239 (AP-12)
Adams Co., Colorado
pth Logged:s 231°'
ire Line Operator: C. Jones Unit/Instrument #: D-1
logist/witness: Richard Hunt Engineer:

luid Type:
it sise:
nside Casing Diameter:

GANMA ELECTRIC
robe #: 1489 Resistivity S8cale (Ohm/in): 20
ge: 10/.5" Spontaneous Potential (mv/in): 10
ime Constant: 2 Logging Speed (Pt/min): 20

hart Scale (CP8/im): 10

ging Speed (Pt/min): 20

Digilog, Inc.

Fluid Level: Circulation:

Date: 4/5/82

Depth Drilled:

Time S8ince

Cased Interval:
Casing Thickness:

R
mV -
: 504

1;;43;:> 0

116
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Boring 1239 Continued
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ell Logging Co.: Digilog, Inc.
lient: Corps of Engineers

ole #: 1247 (AP-21) Date: 5-27~82
cation:
pth Logged: 132' Depth Drilled: 132'
ire Line Operator: Hohaus Unit/Instrument #: D-2
eologist/Witness: Richard Hunt Engineer:
Time S8ince
luid Type: Fluid Level: Circulation:
it s8isze: Cased Interval:
nside Casing Diameter: Casing Thickness:
GAMMA ELECTIRIC
robe #: 1430 Resistivity B8cale (Oh 'in): 20
ge: 10/.5" Spontaneous Potential (mv/in): 20
ime Constant: 4 Logging Speed (Ft/min): 20

hart Scale (CP8/in): 10
ogging Speed (Ft/min): 20
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ell Logging Co.: Digilog, Inc.
lient: U.S. Army Engineers
ole #: 1251 (AP-25) Date: 5-6-82
tion: Adams Co., Colorado
pth Logged: 141°' Depth Drilled: 143°
ire Line Operator: C. Jones Unit/Instrument #: D-4
logist/witness: Richard Hunt Engineer:
Time Bince
luid Type: Pluid Level: Circulation:
it sise: Cased Interval:
nside Casing Diameter: Casing Thickness:
ELECIRIC
robe #: 1489 Resistivity Scale (Ohm/in): 40
ge: 20/.5" Spontaneous Potential (mv/in): 10
ime Constant: 4 Logging S8peed (Ft/min): 20
hart Scale (CP8/in): 20
ging Speed (Ft/min): 20
Oy
+ -
mV
S04
Y
1004
1104 —
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